A review of quantitative structure–property relationships for the fate of ionizable organic chemicals in water matrices and identification of knowledge gaps†

Tom M. Nolte* and Ad M. J. Ragas

Many organic chemicals are ionizable by nature. After use and release into the environment, various fate processes determine their concentrations, and hence exposure to aquatic organisms. In the absence of suitable data, such fate processes can be estimated using Quantitative Structure–Property Relationships (QSPRs). In this review we compiled available QSPRs from the open literature and assessed their applicability towards ionizable organic chemicals. Using quantitative and qualitative criteria we selected the ‘best’ QSPRs for sorption, (a)biotic degradation, and bioconcentration. The results indicate that many suitable QSPRs exist, but some critical knowledge gaps remain. Specifically, future focus should be directed towards the development of QSPR models for biodegradation in wastewater and sediment systems, direct photolysis and reaction with singlet oxygen, as well as additional reactive intermediates. Adequate QSPRs for bioconcentration in fish exist, but more accurate assessments can be achieved using pharmacologically based toxicokinetic (PBTK) models. No adequate QSPRs exist for bioconcentration in non-fish species. Due to the high variability of chemical and biological species as well as environmental conditions in QSPR datasets, accurate predictions for specific systems and inter-dataset conversions are problematic, for which standardization is needed. For all QSPR endpoints, additional data requirements involve supplementing the current chemical space covered and accurately characterizing the test systems used.

Introduction

After anthropogenic chemicals have been utilized, they are disposed of and can enter the environment with possible detrimental effects on human and ecosystem health. The environmental fate of chemicals is relevant not only for existing (legacy) compounds,† but also for the development of new compounds.‡ Benign by design is a major building block on the road to green and sustainable chemistry and is of interest to general public, regulatory agencies, municipalities, companies and institutions that are responsible for wastewater treatment and clean drinking water.§ The main processes governing the fate of chemicals can be grouped into sorption, abiotic degradation, bioaccumulation and biodegradation which depend on the chemical and biological species involved, and environmental conditions applied (Fig. 1). Of these fate processes, biodegradation is often the most important factor in removal, and hence, is considered important in design, development and registration of a chemical.¶ Ionizable organic chemicals (IOCs) such as pharmaceuticals and herbicides represent a class of emerging pollutants of which many are inherently non-biodegradable.‖ However, assessments focus on apolar chemicals instead.¶§ It is crucial that parameters governing the environmental fate of new compounds can already be estimated accurately during a chemical’s development phase, e.g. to aid the development of new compounds that are non-persistent and/or non-bioaccumulative¶¶ or to predict their removal during advanced water treatment. When predicting environmental fate, it is important to differentiate factors of the test system, i.e.
environment, from factors of the chemical. Whereas variability in biological species and environmental conditions may introduce uncertainty in the data, molecular properties form the basis of their intrinsic fate properties. In the absence of a homogeneous dataset, variability in conditions can greatly influence the reliability of predictions. This is especially the case for IOCs since their fate properties are heavily dependent on speciation and interdependencies may be involved.12,13

Quantitative Structure–Property Relationships (QSPRs) can be used to predict environmental fate by representing the chemical characteristics responsible for differences between diverse families of compounds.14,15 QSPRs rely on the generation of molecular descriptors (MDs). Popular MD generation packages include Dragon,16 PaDEL17 and Corina18 but also specialized methods exist.19,20 The determination of potentially relevant MDs is done by methods such as principal component analysis (PCA) and genetic algorithms (GAs), after which the selected MDs are related to a property. Many statistical and machine learning algorithms are available such as regression, genetic algorithms, neural networks and rule-based decision making and their relative success depends on the inherent relationships between the descriptors and endpoint. Though useful methods exist (e.g. PBT indices),21 it is well known that not one QSPR can fully describe the diverse range of fate and exposure processes a chemical may exert in environmental compartments.22,23 In order to apply the optimal QSPR in risk assessment, it can be convenient to have a comprehensive database of models from which an end-user can choose. A distinction can be made between general, sub-general and specific QSPRs which are developed using general datasets, sub-general datasets and specific chemical classes, respectively. General models tend to have a wide range of applicability but relatively low accuracy, whereas class-specific models tend to have a narrow AD and high accuracy. The range of applicability and the level of accuracy of sub-general models lie somewhere in between.22,24 Due to their low cost and ease of use, QSPRs can seem very attractive from an end-user perspective. It is however vital that an end-user is able to judge whether the proposed application of the QSPR is within the limits of its design. The evaluation of QSPR models is part of good practice of model development and exploitation, and requires mechanistic understanding.25–27 Evaluation commonly involves internal evaluation and external evaluation as well as an assessment of the applicability domain (AD). Internal and external evaluation is mostly performed by QSPR developers themselves using various methods,25,28,29 as developers normally split their data into a training and a test set to detect overfitting. Without the characterization of a QSPR’s AD, the reliability of its predictions is indeterminable; hence AD assessment is highly recommended. Not one method is best for defining the AD of QSPRs but several quantitative methods exist.30–33

The aim of this review was to evaluate the currently available public fate/exposure QSPR models for their applicability towards IOCs in aquatic environments. Doing so, we also identified the main experimental (environmental) conditions influencing the fate of IOCs and propose strategies for standardizing and homogenizing QSPR datasets to mitigate the influences of experimental conditions on internal dataset variability and predictions. In order to do this, we made an overview of aquatic QSPR models covering sorption, abiotic degradation, biodegradation and bioaccumulation. As preliminary investigation showed that this scope is very large we confined the review to generic media only, e.g. for general sediments and soils (not individual fractions) and degradation in representative water matrices (e.g. lakes, rivers, and wastewater). Only degradation models for individual transformation mechanisms (e.g., biodegradation, direct and indirect photolysis, as shown in Fig. 1) were included. This was done because of the influence of environmental conditions on the overall removal34,35 and inhomogeneity in existing QSPR ‘meta-data’, especially relevant for IOCs due to complexation and dissociation processes.3,16 QSPRs compiled described the endpoint’s relationship to a broad range of molecular descriptors, including calculated fingerprints, measured properties (e.g. water solubility, octanol (K_{ow}) and lipid (K_{lipw}) partitioning), substituent constants, 2D/3D descriptors, QC/QM and thermodynamic parameters.

Methodology

QSPR search

QSPRs for sorption, abiotic degradation, biodegradation, and bioconcentration were extracted from publications using Web of Science, PubMed and Google Scholar. Search terms are given in Table ESI.0 Searches were conducted before December 2016. QSPRs for individual reaction processes were preferred over multiple simultaneously occurring processes, e.g. both direct and indirect photolysis instead of total photolysis. We filtered the initial pool of 1000+ papers by manual selection of studies stating a combination of keywords in either the title or abstract using common text search methodology and expert judgement. In addition, we supplemented this study with QSPRs from
literature reviews such as Mamy et al. (2015) and Doucette et al. (2003)\(^\text{16–18}\) and databases. The databases used were the Joint Research Centre QSAR Model Database,\(^\text{24}\) the QsarDB,\(^\text{44}\) the QSPR-THESAURUS database\(^\text{62}\) and the LFER database from the Helmholtz Centre for Environmental Research.\(^\text{44}\) Though some were compiled (Table ES1†), no searches were performed for QSPRs predicting water treatment efficiencies using e.g. TiO\(_2\), ferrite, goethite, activated carbon fiber, sand/micro/nano-filteration or reverse osmosis as such methods are used only sporadically. Abiotic degradation processes resulting from reaction with relevant reactive intermediates (RIs) were identified, i.e. reaction with hydroxyl radicals (through UV-mediated lysis of H\(_2\)O\(_2\), or from HOCl, ClO\(_2\) and O\(_3\)) and singlet oxygen. For biodegradation, we focused on QSPRs predicting biodegradation rate constants (or equivalent) for the parent chemical (i.e. primary biodegradation). Main qualitative information extracted from the model (if applicable) is as follows: (1) the model equation, (2) the types of compounds in the training and test series, and (3) the method and/or algorithm(s) used.

QSPR selection

A total of 857 QSPR models were acquired and evaluated qualitatively based on \(r^2\), \(r_{\text{adj}}^2\), \(q^2\), and \(N\) (train/test/ext.). Though the \(r^2\) and related coefficients are sub-optimal for comparing heterogeneous models and standardized reporting formats exist,\(^\text{46}\) they are part of standard procedures, making them the most practical measure for comparison. From the compilation, we extracted models (Tables 1–6), using as inclusion criteria: (i) a training series with more than 10 compounds, and (ii) an \(r^2\) of higher than 0.6 for the training set. In cases where only \(r_{\text{adj}}^2\) or \(q^2\) values were available, we used \(r_{\text{adj}}^2 > 0.6\) and \(q^2 > 0.5\) as inclusion criteria.\(^\text{26–27}\) In case multiple models were developed for the same dataset, only the ‘best performing’ global model is given.

Subsequently, we manually excluded QSPRs for sorption and bioconcentration which had a descriptive applicability domain (AD) of “hydrophobics”, “PAHs”, or “neutral”. (A)biotic degradation processes are mostly influenced by the relative presence of functional groups and electronic factors, rather than polarity;\(^\text{10,44,45}\) hence, we selected QSPRs developed for ionizable functional groups.\(^\text{46–48}\) We supplemented the selection with QSPRs commonly used in environmental regulation and risk assessment. These were the Sabljic et al. sorption models using the molecular connectivity method with improved correction factors\(^\text{49,50}\) as implemented in EPI Suite,\(^\text{51}\) the Franco and Trapp (2008) sorption QSPRs for IOCs\(^\text{52}\) as implemented in recent SimpleTreat versions,\(^\text{53}\) the Arnot-Gobas method to calculate the BCF in fish from mechanistic first principles,\(^\text{54}\) and EPI Suite’s BIOWIN 5 classification QSPRs for biodegradation.\(^\text{51}\) The models included were developed using a range of computing techniques such as Partial Least Squares (PLS), Multiple Linear Regression (MLR), Artificial Neural Networks (ANNs), Linear Free Energy Relationships (LFERs), allowing comparison between classical and more recent techniques. QSPRs that did not meet the selection criteria along with reporting information are given in the ESL.† As required by the OECD guidelines, we interpret mechanistically the QSPRs and discuss the influences of the experimental (environmental) media. To this end, influencing processes were distinguished e.g. speciation as a function of \(pK_a\) and pH, binding mechanisms, temperature-dependences (Arrhenius; van’t Hoff) and medium chemistry.

Results and discussion

Sorption

General. A total of 333 QSPRs were found predicting sorption to sediments, soils, and suspended solids. QSPR correlation coefficients are highly variable depending on the compound class and on the number of compounds used to develop the relationship (Tables 1, ES1†). Due to the variability in type, concentration and low saturation of OCs in sediments and soils, QSPRs are generally developed for \(K_{\text{oc}}\) (adsorption coefficient normalized to the OC content), but QSPRs also exist for \(K_d\) (linear adsorption coefficient), \(K_{\text{om}}\) (normalized to the soil OM content), and \(K_L\) (Langmuir adsorption coefficient).\(^\text{56}\) There were few QSPRs available that were specifically developed for IOCs. Rather, IOCs are included in QSPR datasets to develop global QSPRs with broad applicability. 17 QSPRs for \(K_{\text{oc}}\) and 4 QSPRs for \(K_d\) passed the selection criteria and are given in Table 1. Importantly, no appropriate QSPRs exist for sorption of IOCs specifically to sediment systems.

Descriptors. QSPRs were developed using heterogeneous descriptors e.g. experimental \(K_{\text{oc}}\) and \(pK_a\) computed physchem. properties, topological fingerprints\(^\text{46,64}\) and pharmacological volume of distribution (drugs).\(^\text{76}\) The results indicate that \(K_{\text{om}}\) (or \(D_{\text{ow}}\)) alone is not an accurate predictor for sorption\(^\text{77,78}\) (Table ES1†). Notably, the QSPR \(K_{\text{om}}\) model derived by Franco and Trapp (2008) for 93 acids (\(r^2 = 0.54; 0.44\)) widely used in risk assessment did not pass the qualitative cut-off criteria, whereas the model for 65 bases partially met the criteria (\(r^2 = 0.76; 0.55\)).\(^\text{52}\) This indicates that uniparameter \(K_{\text{om}}/D_{\text{ow}}\) models should be avoided.\(^\text{52,53,79,80}\) The class-specific LR QSPRs by Matter-Muller et al. (1980)\(^\text{81}\) and Sabljic et al. (1995)\(^\text{82}\) are an exception to this rule, but these have a very limited AD. The poor predictions by \(K_{\text{om}}\)-based QSPRs for IOCs can be attributed to specific interactions between IOCs and sorbents which are not covered by hydrophobicity.\(^\text{52,74}\) The inclusion of polar and ionizable compounds in global QSPRs leads to a decrease in the correlation, confirming that processes other than hydrophobic bonding play a role.\(^\text{86,66,74}\) (Table 1). In order to improve predictions for ionizable chemicals, other molecular descriptors which reflect other interaction types need to be included. For example, scanning 1457 Dragon\(^\text{19}\) descriptors, Gourazri et al.\(^\text{84}\) built MLR and ANN QSPRs for the prediction of \(K_{\text{oc}}\) for pesticides.

The FCM methods for sorption (\(K_{\text{oc}}\)) to soil by Tao et al. (1999)\(^\text{57}\) and Meylan et al. (1992)\(^\text{56}\) used structural correction factors such as the number of aliphatic carbon bonds to two H-polar fragments (expressing hydrogen bonding), the number of primary nitrogens and branching. Similarly, Tao et al. (1999)\(^\text{56}\) developed a QSPR (covering 6.4 \(K_{\text{oc}}\) log-units) using topological indices and polarity factors \((N = 543\) and \(r^2 = 0.86\)). The more recent study by Wang et al. (2015)\(^\text{56}\) screened a broad range of
<table>
<thead>
<tr>
<th>Endpoint</th>
<th>QSPR equation(s), algorithm(s), and descriptor(s)</th>
<th>r^2</th>
<th>Training/test set size and description of chemical space</th>
<th>Matrix</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{oc}</td>
<td>$\log(K_{oc}) = \sum \delta p_f + \sum \delta n_f$, fragment contribution method (FCM)</td>
<td>0.97</td>
<td>$N = 430/162$. Miscellaneous organic compounds including 30 acids and 50 amines, ($-0.31 \leq \log(K_{oc}) \leq 7.34$)</td>
<td>Soil</td>
<td>55</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>$\log(K_{oc}) = 0.53\chi + \sum(\delta n p_f) + 0.62$, fragment contribution method (FCM)</td>
<td>0.955</td>
<td>$N = 189/205$. Training set contained 64 non-polar and 125 polar organic compounds</td>
<td>Soil</td>
<td>56</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>$\log(K_{oc}) = 2.12V_4 + 0.72R_2 - 0.23\sum a_{ii}^2 - 2.33\sum b_{ij}^2 + 0.19$, MLR</td>
<td>0.954</td>
<td>$N = 119$. Miscellaneous organic compounds including acids and amines</td>
<td>Soil</td>
<td>57</td>
</tr>
<tr>
<td>D_{oc}</td>
<td>$\log(D_{oc}) = 0.0119V_4 + 0.04875A_0 - 0.726$, MLR</td>
<td>0.94</td>
<td>$N = 29$. C$_6$H$_4$N model amines (pH 6.8), >90% of species ionized</td>
<td>Pahokee peat soil</td>
<td>58</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>$\log(K_{oc}) = 1.6004 - 7.7176(1.3781)\log(K_{oc}) + 6.9497(1.3781)\log(K_{oc}) + 0.7115(0.2310)\chi$, MLR</td>
<td>0.9365</td>
<td>$N = 49$. Substituted anilines and phenols</td>
<td>Soil</td>
<td>59</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>Least-squares square vector machine (LS-SVM), descriptors: M_{aa}, e-state, bond connectivity, and 24 fragments</td>
<td>0.910</td>
<td>$N = 571$. Miscellaneous organic compounds, mostly non-polar</td>
<td>Soil</td>
<td>60</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>$\log(K_{oc}) = aMR + b_1$, LR</td>
<td>0.52 to 0.92</td>
<td>$N = 36$. 10 esters, 8 acids, 10 amides, 8amines</td>
<td>Podzol; alfisol;sediment</td>
<td>61</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>Artificial Neural Network (ANN), descriptors: K_{oc}, χ_α, α, E_{LUMO}, E_{HOMO}, δ_{f}^f, δ_{o}^o, μ, M_{oc}</td>
<td>0.865</td>
<td>$N = 42$. Substituted anilines and phenols</td>
<td>Soil</td>
<td>62</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>$\log(K_{oc}) = 0.188\chi - 0.336\chi + 0.755\chi + 0.922$, MLR</td>
<td>0.86</td>
<td>$N = 543$ (400/143). Miscellaneous organic compounds. 85 nonpolar and 315 polar chemicals in the training set; 22 nonpolar and 121 polar chemicals in the validation set</td>
<td>Soil</td>
<td>63</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>$\log(K_{oc}) = 0.039MLOGP2 + 0.010\alpha - 0.3420 - 0.069ATSC8\alpha - 0.1234n - 0.3680_{fch} + 0.473p_{117} + 2.33s_{maxA,E,\mu} + 0.302M_{oc}16u - 1.612$, MLR</td>
<td>0.854</td>
<td>$N = 618$. Including anilines and organic acids</td>
<td>Soil</td>
<td>64</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>$\log(K_{oc}) = -2.19(\pm 0.30) + 2.10(\pm 0.14)V_4E_1 - 0.34(\pm 0.04)\log(K_{oc}) - 0.31(\pm 0.05)\log(K_{oc}) + 0.33(\pm 0.12)C_{10}$, MLR</td>
<td>0.82</td>
<td>$N = 93/350$. Mostly non-ionic organic chemicals</td>
<td>Soil</td>
<td>65</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>$\log(K_{oc}) = 0.52\log(K_{oc}) + 1.02, \log(K_{oc}) = 0.60\log(K_{oc}) + 0.32, \log(K_{oc}) = 0.62\log(K_{oc}) + 0.85$, LR</td>
<td>0.83</td>
<td>$N = 390$. Non hydrophobics including acids and amines; 23 organic acids; 20 anilines</td>
<td>Soil</td>
<td>66</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>$\log(K_{oc}) = 0.340 + 0.294ch10 + 9.865 \times 10^{-2}F_{E_1} + 12.897RNBR - 0.1407$, MLR</td>
<td>0.806</td>
<td>$N = 322$. Wide variety of organic chemicals</td>
<td>Soil</td>
<td>67</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>LR and Artificial Neural Network (ANN), descriptors: χ_α, K_{oc}</td>
<td>0.77</td>
<td>$N = 777$. Mostly non-ionic organic chemicals. Tested using polybrominated diphenyl ethers</td>
<td>Soil</td>
<td>51, 66 and 68</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>$\log(K_{oc}) = 2.1560 + 0.42399 \log(K_{oc}) + 0.0027206PNSA-1\chi$ $\log(K_{oc}) = 0.076$, MLR</td>
<td>0.76</td>
<td>$N = 68/276$. Including anilines and organic acids</td>
<td>Soil</td>
<td>69</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>$\log(K_{oc}) = 0.0168M_0 - 0.017M_5 - 0.040M_5 + 0.19M_{acc} - 0.27M_{don} + 0.37$, MLR</td>
<td>0.71</td>
<td>$N = 387/53$. Miscellaneous organic compounds, (mostly 1.5 < $\log(K_{oc}) < 5$)</td>
<td>Soil</td>
<td>70</td>
</tr>
</tbody>
</table>

*Table 1: Compilation of QSPR models for sorption to environmental matrices with $r^2 \geq 0.6, N \geq 10$ and appropriate chemical space."
<table>
<thead>
<tr>
<th>Endpoint</th>
<th>QSPR equation(s), algorithm(s), and descriptor(s)</th>
<th>(r^2)</th>
<th>Training/test set size and description of chemical space</th>
<th>Matrix</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{oc})</td>
<td>(\log(K_{oc}) = \log(\rho_0 \times 10^{0.54 \log(P_n + 1.11)}) + \rho_{sym} \times 10^{0.54 \log(P_n + 1.54)}), MLR</td>
<td>0.44, (0.54)</td>
<td>(N = 93). Organic acids</td>
<td>Soil</td>
<td>52</td>
</tr>
<tr>
<td>(K_d)</td>
<td>Artificial Neural Network (ANN), descriptors: (\log P), Mlog P, (pK_m), HF, DB</td>
<td>0.8866; 0.9367</td>
<td>N = 49. Pharmaceuticals</td>
<td>Agricultural soil; digested sludge–water mixtures</td>
<td>71</td>
</tr>
<tr>
<td>(K_d)</td>
<td>Stepwise regression, partial least squares and Bayesian artificial neural networks (ANNs), descriptors: (a_base), vsa_hyd, (PC), (a_don); (a_acc), (r_\text{g}), vsa_pol, rings, weight</td>
<td>0.62–0.69</td>
<td>(N = 148). 44 uncharged, 60 positively and 28 negatively charged, and 16 zwitterions</td>
<td>Suspended solids from biological treatment</td>
<td>72</td>
</tr>
<tr>
<td>(K_d)</td>
<td>(\log(K_d) = 2.61 + (0.67)\log(K_{oc}), \text{LR})</td>
<td>0.6</td>
<td>(N = 41). 15 pharmaceuticals</td>
<td>Suspended solids from biological treatment</td>
<td>73</td>
</tr>
<tr>
<td>(K_d)</td>
<td>(\log(K_d) = (1.74 \pm 0.46) + (0.22 \pm 0.03)\log(d) + (0.92 \pm 0.10)\rho_0, + (0.99 \pm 0.28)\log(PI \times \text{energy}) - (0.85 \pm 0.17)\log(TPSA) + (0.14 \pm 0.05)\eta_{\text{HDD}} + [(0.08 \pm 0.03)\eta_{\text{HBA}}\right)\text{MLR}</td>
<td>0.59</td>
<td>(N = 217). 54 pharmaceuticals</td>
<td>Suspended solids from biological treatment</td>
<td>74</td>
</tr>
</tbody>
</table>

\(n_i\): number of the \(i\)th fragment and the \(j\)th structural fragment of the chemical, \(F_i\); \(F_j\): fragment constant and structural factor for the \(i\)th fragment of the chemical, \(1\): molecular connectivity index, \(N_\text{at}\): number of the fragment occurring in the chemical, \(P_\text{corr}\): fragment correction factor, \(V_c\): McGowan’s characteristic volume, \(R_\text{ex}\): excess molar refraction, \(\sum d_\text{eff}^2\); \(\sum h_\text{eff}^2\): effective hydrogen-bond acidity and basicity, \(V_\text{mc}\): turbomole-optimized molecular volumes, \(A_i\): surface area with an electron density of 0.2 to 0.31, \(f_{\text{base}}\); \(f_{\text{acid}}\): Balaban type parameters, \(f_{\text{HBD}}\): number of donor atoms for H-bonds, \(f_{\text{HAc}}\); \(f_{\text{A}}\): number of donor atoms for H-bonds, \(f_{\text{CH}_{2}}\); \(f_{\text{CH}_{3}}\): number of hydrogen-bond moments, \(A_{\text{MP}}\): partial negative surface area, \(\varphi_{\text{mp}}\): Kier & Hall connectivity index (order 0), \(E_{\text{HOMO}}\); \(E_{\text{LUMO}}\): lowest exchange energy (AM1) for C–O bonds, \(\text{RNB}\); \(\text{rings}\): (relative) number of (benzene) rings, \(T_{\text{mol}}\): topographic electronic index (AM1) over all bonds, \(\text{PNSA}\); \(\text{sharp}\); \(\text{abs}\); \(\text{z}\): partial negative surface area, \(\text{T}_{\text{PP}}\); \(\text{PP}_{\text{max}}\); \(\text{P}_{\text{max}}\): the maximum \(\pi–\pi\) bond order, \(\gamma\); \(\gamma_{\text{AM1}}\): absolute hardness, \(M_1\); \(M_2\); \(M_3\); \(M_{\text{acc}}\); \(M_{\text{don}}\): s-moments (surface polarization charge density), \(\rho_0\): number of acceptor atoms for H-bonds, \(\chi_i\): Kier & Hall connectivity index (order \(i\)), \(\chi_0\): Randic index, \(\chi_1\): \(\chi_2\): molecular connectivity indices, \(M_0\); weight: molecular weight, e-state: Kier & Hall electrotopolological state atom index, \(K_{oc}\): log \(P\); log \(D\); \text{MLOGP2}\): (squared Moriguchi) octanol–water partition (distribution) coefficients, \(K_{\text{OH}}\): molecular polarizability, \(E_{\text{TPSA}}\): topological polar surface area.
chemical descriptors but did not improve results indicating that information-rich structural fragments are best able to capture non-specific interactions between IOCs and organic carbon. Additionally, Klamt et al. (2002)56 and Poole and Poole (1999)57 developed general-purpose QSPPRs for K_{oc} using quantum-chemical calculations and density functional theory (DFT) combined with a continuum solvation method ($r^2 = 0.71$), and solvation parameters ($r^2 = 0.954$) characterizing the contributions of different intermolecular interactions (e.g. hydrogen bonding, cavity formation, and dipole–dipole). Von Oeopen58 developed models for sorption (K_{oc}) of esters, acids, amides and amines to sediment, podzol and alfsol soils using electronic, geometric and topological descriptors ($r^2 = 0.52–0.92$).

Sorption to wastewater solids as described by K_d was related by Barron et al. (2009)59 to log P, pK_a, a hydrophilic factor and the number of double bonds and rings. Analysis of an inhomogeneous dataset using ANNs by Berthod et al. (2016)60 showed the non-linear influence of hydrophobicity, charge and molecular shape using polarizability and electrostatic potential and field-related descriptors. Though the MLR K_d model for wastewater solids by Sathyroonthy and Ramsburg (2013)61 was inferior ($r^2 = 0.59$) to the Barron et al. (2009) ($r^2 = 0.94$) and Berthod et al. (2016) ($r^2 = 0.62–0.69$) QSPPRs, it showed the relative importance of involved sorption processes, with D_{sa}, $TPSA$ (topological polar surface area), n_{HBD}, n_{HBA} (number of hydrogen donors and acceptors) and $Pi.Energy$ (total π energy associated with the aromatic rings) as most important chemical descriptors. The model by Bronner and Goss (2011)62 showed the relevance of van der Waals interactions, cavity formation and H-donor properties of the sorbate when sorbing to Pahokee peat. The combination of studies indicates that interaction type-specific descriptors improve predictions when homogeneous datasets are used (Table 1). Sorption is favorable when the free energy of interaction between the sorbent and sorbate is negative with the driving force of the interaction being either enthalpy or entropy.63 The intermolecular interactions involved in sorption are diverse, e.g. van der Waals interactions, hydrophobic bonding, hydrogen bonding, charge transfer, ligand exchange, direct and induced ion-dipole and dipole–dipole interactions and chemisorption. Since many of the selected global QSPPRs (Table 1) use a combination of MDs for these interaction types, their relative performance may be dependent more on the algorithm relating the MDs to the sorption endpoint.

QSPR algorithms. The majority of QSPPRs (16) were developed using linear or multi-linear regression (LR or MLR), 3 were developed using ANNs, 2 using a FCM and 1 using a Least-Squares Support Vector Machine (LS-SVM). For sorption standardized to the fraction organic carbon (K_{oc}), various algorithms produce satisfactory results. Evaluation of the relative performances of algorithms is difficult due to the inhomogeneity of datasets and metrics used. However, different techniques have been used on similar K_{oc} datasets56,63,64,70 and r^2 is often reported. The FCM QSPPR for soils by Meylan et al. (1992)64 for polar and non-polar organic compounds was tested using 11 acids and 10 anilines in the validation set ($N = 205$; $r^2 = 0.856$), and a similar dataset ($N = 592$) was used to develop a K_{oc} model using a FCM ($r^2 = 0.969$) for miscellaneous chemicals.64 It seems that the FCMs applied by Meylan et al. (1992) and Tao et al. (1999)55,58 perform best, though the r^2 of the validation results was significantly lower than that of the training results (0.955) in the case of Meylan et al. The datasets for soils and sediments originally compiled by Meylan et al.56 and Sabljic et al.66 were used multiple times after their original publication, using different methods. Using a SVM and MLR, Wang (2009) and Wang et al. (2015) developed QSPPRs for organic compounds60,64 with inferior predictions compared to those of the previous methods ($r^2 = 0.835–0.929$ and 0.854, resp.), potentially due to the broad AD (an updated EPI Suite dataset). An entry in the QSPR thesaurus database described EPISUITE (Ver. 4.0, 2009), which was developed using molecular connectivity indices (MCI) ($r^2 = 0.77$).61 The datasets were also re-used by Kahn et al. (2005) and Gramatica et al. (2006) for 344 ($r^2 = 0.76$) and 643 ($r^2 = 0.82$) compounds, both using MLR.57,69 Furthermore, Tulp et al. (2010) developed a MLR model for K_{oc} ($r^2 = 0.806$) for 322 organic chemicals67 and class-specific QSPPRs were developed by Liu and Yu (2005) and Mishra et al. (2012) using ANNs and MLR for substituted anilines and phenols.69,70 For predictions of K_{oc} by global QSPPRs, FCMs generally perform better than regression methods.

The best performing QSPR predicting adsorption coefficients K_d (unstandardized to the organic carbon fraction) were the ANNs by Barron (2009) for homogeneous datasets of wastewater sludge and agricultural soil.71 In contrast to ANNs, linear regressions and free energy relationships (LFERs) are based on a mechanistic understanding of the partition process.80,81 However, different interaction types (i.e. descriptors) relate to the sorption endpoint in a non-linear way via, e.g. speciation, complexation, conformation, and reorientations in OM complexes.82 ANNs outperform regression-based QSPPRs and LFERs60,62,71,72,83 (Table 1) because their structure allows for such complex non-linear relationships between molecular descriptors and endpoints. In ANNs, the weight assigned to each neuron is not predetermined, but depends on the data and training method. Though mechanistic information can be obtained, a drawback of ANNs is their lower interpretability.72 Similarly, LS-SVMs also outperformed MLR in the case of K_d prediction. Considering the similarity in the sorption media used, interaction types and descriptors selected, ANNs are likely among the most effective methods to model sorption in sediment.

Dataset homogenization. Variability in environmental conditions can alter the outcome of a sorption experiment, especially in the case of IOCs. Many of the developed sorption QSPPRs do not account for variations in environmental conditions such as pH, OC content, CEC (cation exchange capacity), ionic strength, temperature, etc.66–68 Many of these conditions influence the outcome of a sorption experiment, and moreover, their influence may be non-linear and involved processes may be interrelated. As a result, QSPR predictions for specific environmental matrices may be misleading. Illustratively, the ANN QSPR ($N = 49$; $r^2 = 0.89$) by Barron et al. (2009) for sorption of PhACs onto relatively homogeneous wastewater suspended solids71,74 had better statistics compared to the ANN by Berthod...
et al. (2016) for a more heterogeneous dataset of wastewater solids ($N = 148; r^2 = 0.62–0.69$).

Various approaches are available to homogenize datasets to environmental conditions. For example, to predict K_d and K_{oc} as a function of pH, a species-specific approach can be taken weighing the contributions of the neutral and ionic fractions separately. Sorption data can be standardized using e.g. the Henderson–Hasselbalch equation for monovalent acids and bases:

$$D_a(pH) = \frac{K_d}{1 + 10^{(pH - pK_a)}} + \frac{K_{d,ion}}{1 + 10^{(pH - pK_d)}} \tag{1}$$

where $K_{d,n}$ and $K_{d,ion}$ are the sorption coefficients of the neutral and ionized compounds and the parameter a is 1 and -1 for acids and bases, respectively. The relationship can be used to discriminate between an observed K_d (at a specific pH), and a speciation-specific $K_{d,n}$, for which QSPR models can be built. Not only H^+, but also the presence of Al^{3+}, Ca^{2+}, Mg^{2+}, K^+, and Na^+ cations influences sorption as they determine whether binding positions in the sorbate matrix are saturated. To account for such effects the CEC could either be (1) standardized in sorption experiments, (2) applied in competitive cation exchange-type corrections, or (3) included as a QSPR descriptor itself.

Normally, K_d is corrected to K_{oc} accounting for the variable fraction of organic carbon (f_{oc}) in sediment or soil (see K_{oc} QSPR in Table 1). However, for low values of f_{oc} ($\sim 10^{-4}$ in some aquifers), direct sorption onto the mineral matrix becomes important. Also, since the concentration and composition of OMs varies according to depth, nonlinear relationships between K_d and f_{oc} should be anticipated. Illustratively, the conversion of K_{oc} to K_d for 78 acidic

Table 2 Compilation of QSPR models for reaction with hydroxyl radicals (*OH) with $r^2 \geq 0.6$, $N \geq 10$ and appropriate chemical spacea

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>QSPR equation(s), algorithm(s) and descriptor(s)</th>
<th>r^2 (r_{adj}^2)</th>
<th>q^{2c}</th>
<th>Training/test set size and description of chemical space</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(k_{ai})</td>
<td>log(k_{ai}) = 2.153 + 0.895DBE – 0.134WPSA PCA and MLR</td>
<td>0.918 (0.915)</td>
<td>0.856</td>
<td>$N = 55/28/28$. Pharmaceuticals, personal care products or organic solvents</td>
<td>10 and 101</td>
</tr>
<tr>
<td>log(k_{ai})</td>
<td>Artificial Neural Network (ANN) descriptors: $n_{sp^3C^t}/C^t$; $n_{C=C}, n_{C=O}$, $n_{COOH,COO}$, $n_{OH,OH}$, $n_{CH=O}$, $n_{C=O,OH}$, $n_{COO,C}$, $n_{C=O,C}$, n_{HAcc}, n_{OH}, n_{RO}, n_{ROH}</td>
<td>0.9</td>
<td>0.81</td>
<td>$N = 146/31$. Polar (84%) and non-polar (16%) compounds, qualitative screening of the Buxton et al. (1988) database</td>
<td>102 and 103</td>
</tr>
<tr>
<td>k_{OH}</td>
<td>$k_{OH} = \sum_k [1 + 10^pH] \times \Pi[(\beta\text{-group})] \times \Pi[(\beta\text{-group})]$ improved fragment contribution method (FCM)</td>
<td>0.89</td>
<td>—</td>
<td>$N = 72$. Alkanes, alcohols, organic acids and bases</td>
<td>104 and 105</td>
</tr>
<tr>
<td>log(k_{ai})</td>
<td>log(k_{ai}) = 16.451 – 6.932Me + 0.159n_{OH} – 0.867$CRH - 1.041n_{HAc}$ – 0.460$WPSA_{index}$ – 0.363MATSm2 – 0.362Mor27p; log(k_{ai}) = 17.215 – 7.561Me + 0.160n_{OH} – 0.625$CRH + 0.310n_{HAc}$ – 0.563$WPSA_{index}$ – 0.362MATSm2 – 0.427Mor27p.</td>
<td>(0.846); (0.823)</td>
<td>0.804; 0.773</td>
<td>$N = 17$. Chlorophenols and antimicrobial agents in a Fenton-like system (mild Cu$^{2+}$/H$_2$O$_2$ conditions)</td>
<td>106</td>
</tr>
<tr>
<td>log(k_{ai})</td>
<td>log(k_{ai}) = –0.628[±0.408]$Me – 2.150[±0.633]$piPC90 + 2.249[±0.596]$Mor02e – 0.694[±0.213]$Mor26p + 3.444[±0.999]$E_{HOMO} + 11.905[±0.978]GA and MLR</td>
<td>0.803</td>
<td>0.66</td>
<td>$N = 88/28$; $N = 89/29$. Various chemical classes (phenols, polymeric aromatic hydrocarbons, alkanes, halogenated aromatic compounds, organophosphorus compounds, etc.)</td>
<td>107</td>
</tr>
<tr>
<td>log(k_{ai})</td>
<td>log(k_{ai}) = 0.99 – 0.36q_{B} – 0.34$BELV1 – 0.42ATS2m + 0.66$piPC35$</td>
<td>0.774</td>
<td>0.584</td>
<td>$N = 122/25$. Various organic micropollutants including solvents, pharmaceuticals and pesticides in a UV/ H$_2$O$_2$ process</td>
<td>100</td>
</tr>
</tbody>
</table>

a DBE: double bond equivalence, WPSA: weakly polar component of solvent accessible surface area, $n_{sp^3C^t}$: number of sp3 carbons, $n_{C=C}$: number of external and internal C=C double bonds, n_{OH}: number of primary, secondary and tertiary alcohols, $n_{COOH,COO}$: number of carboxylic acids and ions, $n_{CH=O}$: number of ketones and aldehydes, $n_{RO,ROH}$: number of ethers, $n_{COO,C}$: number of non-aromatic C=C and C=O conjugated bonds, n_{HAcc}: number of acceptor atoms for H-bonds, $WPSA_{index}$: Bataan $WPSA_{index}$, MATSm2: Moran autocorrelation of lag 2 weighted by mass, $Mor27p$: Moran2p: 3D-MoRSE signal 27 and 26/weighted by polarizability, MMe: number of methyl groups, piPC90: topological molecular path count of order 9, Mor02e: 3D-MoRSE signal 02/ weighted by atomic Sanderson electronegativities, q_{B}: electronic charge on a C atom, BELV1: lowest eigenvalue no. 1 of Burden matrix/ weighted by atomic van der Waals volumes, ATS2m: Broto-Moreau autocorrelation of a topological structure – lag 2/weighted by atomic masses 2D autocorrelations, and piPC35: molecular multiple path count of order 3. In contrast to the other models (second order), the QSPR by Peng (2016) was developed for pseudo-first order kinetics. r^2, r_{adj}^2 and q^2 denote the Pearson correlation coefficient, adjusted Pearson correlation coefficient (in brackets) for the training set and q^2 for the testing set, resp.
pesticides in 36 temperate soils by Kah and Brown (2007) ($r^2 = 0.721$) leads to a loss in the prediction accuracy. Given that the f_{oc} of ordinary sediments is 0.001–0.025 the calculated variation is a factor of ~25, in agreement with the variation in the K_d data.87,94 Moreover, IOCs may have affinities towards sediments and soils attributable to specific OC types.94,95 For example, Bronner and Goss (2011)93 and Droge et al. (2013)96 recently developed pp-LFERs and LR QSPRs for the sorption of 129 chemicals including pesticides and PhACs ($r^2 = 0.93$) and 29 highly ionized amines ($r^2 = 0.94$) to Pahokee peat. Compared to normal soil, peat has relatively more carboxylic groups.95 Corrections for sorption based on the OM-type are possible,96 but require appropriate characterization of the matrix, e.g. by distinguishing between different OM fractions in sediment and soil.61,95,97

Reaction with hydroxyl radicals ($\cdot OH$)

General. Hydroxyl radicals ($\cdot OH$) are generated chemically during water treatment, as well as through photochemical production from DOM and NO$_3^\text{-}$ in surface water,96,99 the latter with steady state concentrations $[^{18}O]_{ss}$ of 10^{-11} to 10^{-10} M in summers. In total, 58 QSPRs were found for reaction with hydroxyl radicals (through H_2O_2/UV and Fenton-type oxidation). From these, 7 satisfactory QSPRs are given in Table 2 and discussed below. With the exception of 1 study, all QSPRs were developed for the second-order rate constant. No QSPR was specifically developed for IOCs but all partially covered the required chemical space. Though the MLR QSPR by Wols and Vries (2012)100 had significantly lower performance, the dataset included the highest proportion of IOCs and may be preferred for robust predictions.

Descriptors. MLR results by Sudhakaran and Amy (2013)101 give information on the degradation process, with descriptors for $\cdot OH$ reactions being double bond equivalence (DBE), ionization potential (IP), electron affinity (EA) and weak polar component of solvent accessible surface area (WPSSA). A more specific QSPR was developed by Kusic et al. (2009)102 for benzene structures with different substitute groups and other heterocycles containing nitrogen or sulfur ($N = 60$; $r^2 = 0.803$) using Dragon and QC descriptors (semi-empirical and using DFT at the B3LYP theory level and 6-31G(d,p) basis set). Peng et al.103 used physicochemical and quantum chemical (Gaussian) descriptors to predict first-order degradation rate constants for antimicrobial agents ($r^2 = 0.878$) in a Fenton system using Cu^{2+}/H$_2$O$_2$. Though the descriptors used were heterogeneous, the energy of the highest occupied molecular orbital (E_{HOMO}) reoccurred in two QSPRs as well as QSPRs for other abiotic reactions.104–106,108 All used descriptors relate to the relative importance of rate limiting steps of the reactions with hydroxyl radicals ($\cdot OH$), e.g. bond breaking, H-abstraction, transition state formation, steric interactions and diffusion.

Algorithms. The majority of QSPRs for $\cdot OH$ reaction (5) was developed using MLR, 1 was developed using ANNs, and 1 using a FCM.100–103,107 The oldest QSPR for $\cdot OH$ reactions with polar and non-polar compounds was developed by Dutot et al. (2003)105,106 using multi-layer perceptron ANNs ($r^2 = 0.90$). Jin et al. (2015)107 and Sudhakaran and Amy (2013)101 used forward MLR and PCA/MLR for QSPRs, predicting rate constants for various functional groups ($r_{adj}^2 = 0.846$) and PPCPs and organic solvents ($r^2 = 0.918$). A reaction specific SAR strategy was applied by Monod and Dousin (2008)104 who developed a FCM QSPR for alkanes, alcohols, organic acids and bases ($N = 72$; $r^2 = 0.89$) allowing the user to determine not only the overall removal rate constant but also the partial reactivity of chemical functionalities following $\cdot OH$ attack bringing mechanistic information on transformation products. All methods resulted in comparable performance, with discrepancies in r^2 caused largely by the descriptors selected and chemical space covered. For example, using also MLR, Wols and Vries100 acquired inferior predictions for rate constants of 147 different solvents, pharmaceuticals and pesticides ($r^2 = 0.774$). Solvation is expected to affect the reactions for polar and ionizable functional groups due to hydrogen bonding. This may cause over- or underestimation because of invalid thermochemical additivity. A more sophisticated approach (e.g., quantum mechanical calculation) may be required to investigate these effects. Illustratively, Minakata and Crittenden (2011), Minakata et al. (2011)109–111 and Minakata et al. (2014)58 used FCMs with LFERs and transition state theory (TST) to distinguish between different reactions with $\cdot OH$ ($N = 477$; $r^2 = 0.699–0.882$), but multifunctional group compounds were omitted.

Chlorination (HOCI/OCl$^\text{-}$ and ClO$_2$)

General. Commonly, chlorination refers to reaction with either HOCI/OCl$^\text{-}$, which is added in the form of e.g. gaseous chlorine (Cl$_2$), sodium hypochlorite (NaOCl) or calcium hypochlorite (Ca(ClO)$_2$), or reaction with chlorine dioxide (ClO$_2$). The influence of pH on reaction rates through (de)protonation of the oxidant (HOCI/OCl$^\text{-}$, pK$_a$ = 7.53) has been documented.112–113 For example, Deborde and von Gunten (2008) described mechanistically the relationship between the apparent rate constant and the individual HOCI and OCl$^\text{-}$ reagents.114 Since HOCI is a more powerful oxidant than OCl$^\text{-}$, measurements often correspond to the HOCI reaction;114 hence, all QSPRs have been developed for circumneutral pH (pH ~ 7). A total of 26 and 17 QSPRs were found for chlorination (HOCI$_2$ and ClO$_2$, resp.), of which 5 applicable studies are given in Table 3 and are discussed below. All QSPRs for the reaction with HOCI and ClO$_2$ were developed for the second-order rate constant.

Descriptors. Very recently, Lee and von Gunten (2012)115 developed empirical QSPRs for reaction with HOCI/OCl$^\text{-}$ using LFERs and Taft, Hammett and empirical substituent descriptor constants for dissociated phenols, tertiary amines, primary amines, amine derivatives and aromatics ($r^2 = 0.86–0.97$). Gallard and von Gunten (2002)116 developed similar QSPRs for anionic compounds (Table ES1H). Class-specific models for reaction with chlorine dioxide (ClO$_2$) have very recently been developed by Lee and von Gunten (2012)115 using also Hammett and Taft substituent descriptors, and have good statistics ($r^2 = 0.79–0.99$). Similar models were developed earlier by Tratnyek (1994) (ESI4f).118 For two aromatic reactants differing only in substituent(s), the change in the free energy of activation is proportional to the change in Gibbs free energy. In this case, the
Critical Review

Environmental Science: Processes & Impacts

Electronic effect of the substituents directly influences the rate of the reaction. However, if a substituent is located either near or far from the reaction center (for e.g. multifunctional IOCs), steric influence may mask or attenuate the electronic effect. In such cases additional descriptors are required.

A different approach was taken by Lei and Snyder (2007) who used ionization potential (IP) and 3D molecular descriptors to predict removal of endocrine disrupting compounds, pharmaceutical and personal care products ($N = 73; r^2 = 0.705$) by chloride (in %), see ESI3. Deborde et al. (2004) developed a QSPR for reaction with HOCl/OCl$^-$ for monovalent anionic endocrine disruptors based on pK_a ($N = 10; r^2 = 0.93$) and a similar approach was taken earlier by Rebenne (1996) for monovalent and divalent anionic compounds. Interestingly, Gerritsen and Margerum (1990) developed a QSPR ($r^2 = 0.993$) based on a Swain–Scott plot using nucleophilicity data from Hine (1962), but it was applied to only 7 inorganic anions (ESI3). Fan et al. (2005) used molecular autocorrelation topological indices (ATIs) with rate constants (ClO_2) of anilines ($N = 10; r^2 = 0.924$). Rorije (1996) found that E_{HOMO} correlated with the kinetic rate constant for phenols, whereas Gramatica et al. (2005) found similar results using an additional leverage-weighted autocorrelation descriptor (ESI4).

Algorithms. All selected QSPRs for chlorination were class-specific regression-type QSPRs. For both HOCl and ClO$_2$, the LFERs from Lee and von Gunten (2012) are considered best due to their dataset size and chemical space covered, though alternative methods such as ANNs or FCNs may either optimize predictions, or enable the development of global QSPRs. For this, quantum mechanical descriptors may be needed.

Ozonation (O$_3$)

General. Ozonation of wastewater can achieve significant abatement of many organic micropollutants since ozone is a strong oxidant. A total of 89 ozonation QSPRs were found in the open literature. Following earlier work by Lee and von Gunten (2012), a large dataset ($N = 216$) for ozonation has recently been used by Lee et al. (2015) to develop QSPRs for phenols ($N = 35; r^2 = 0.94-0.95$), anilines ($N = 16; r^2 = 0.82-0.86$), mono- and dialkoxybenzenes ($N = 17; r^2 = 0.80-0.90$), trimethoxybenzenes ($N = 4; r^2 = 0.950-0.997$), benzene derivatives ($N = 40; r^2 = 0.65-0.82$), olefins ($N = 45; r^2 = 0.82-0.85$) and aliphatic amines ($N = 59; r^2 = 0.67-0.83$). Of the 6 QSPRs selected, only 1 QSPR predicts ozonation under acidic conditions ($pH = 4$) developed by Zhu et al. (2015) ($N = 28; r^2 = 0.596-0.803$). Satisfactory ozonation QSPRs are given in Table 4 and were developed for second-order reaction rate constants.

Descriptors. The class-specific QSPRs by Lee et al. (2015) were based on one descriptor only, i.e. the energy of the highest occupied molecular orbital (E_{HOMO}) using Hartree–Fock and DFT calculations at the B3LYP theory level with 6-31G and 6-311+G** basis sets, representing intrinsic reactivity. Though heavily dependent on the compound class, the uni-parameter (E_{HOMO}) ozonation QSPRs had large applicability and performed best. While most O$_3$ models used electronic and quantum-chemical descriptors, only Lee and von Gunten (2012)
used Taft and Hammett substituent coefficients.115 MLR results from Sudhakaran and Amy (2013)114 showed the relevance of double bond equivalence (DBE), ionization potential (IP), and weakly polar component of solvent accessible surface area (WPSA) descriptors.

Lee et al. (2014),128 Lei and Snyder (2007)119 and Sudhakaran (2012)127 developed QSPRs for the removal (in %) of diverse chemicals such as PPCPs, endocrine-disrupting compounds (EDCs) and solvents (Table ESI47). From this, the WPSA (the weakly polar component of surface area) appeared most critical in determining removal, as it explained 70% of variance in the data. Subsequent descriptors used were PISA (carbon π solvent accessible surface area), ηmetab (number of bonds amenable to electrophilic attack), ηtrvFG (bonds unstable to nucleophilic attack),119 The descriptors selected verify that electron-donating groups favor ozone reactions while electron-withdrawing groups tend to decrease the reaction rate of organic compounds.

Algorithms. All satisfactory QSPRs for reaction with ozone (O₃) were regressions, such as the MLR QSPRs by Jin et al. (2012) (\(r^2 = 0.964 \)),124 Sudhakaran and Amy (2013) (\(N = 55; r^2 = 0.832 \))110 and Zhu et al. (2014) (\(N = 27; r^2 = 0.562–0.723 \))125 for diverse compounds. Inter-dataset correlations have been found between QSPR endpoints, including the correlation found by Lee and von Gunten (2012) for O₃/CIO₃ and O₃/HClO for aromatics (both \(r^2 = 0.94 \)).126 It is therefore likely that techniques other than regression may help prediction optimizations and development of global QSPRs.

Table 4 Compilation of QSPR models for reaction with ozone (O₃) with \(r^2 \approx 0.6 \), \(N \approx 10 \) and appropriate chemical spacea

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>QSPR equation(s), algorithm(s) and descriptor(s)</th>
<th>(r^2b)</th>
<th>(q^2b)</th>
<th>Training/test set size and description of chemical space</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log(k_{O3}))</td>
<td>(\log(k_{O3}) = -2.658 + 0.195DBE - 0.28WPSA - 0.85IP MLR)</td>
<td>0.832</td>
<td>0.823</td>
<td>(N = 25/28). Pharmaceuticals, personal care products and organic solvents</td>
<td>10 and 101</td>
</tr>
<tr>
<td>(\log(k_{O3}))</td>
<td>(\log(k_{O3}) = 2.489 + 21.117f(0)_s - 126.519f(0)p - 3.852q(C){min} + 48.501f(+)_s) MLR</td>
<td>0.802</td>
<td>0.658</td>
<td>(N = 28/5). Various compounds among dyes, fertilizers, pharmaceuticals in refinery wastewater (pH = 4)</td>
<td>123</td>
</tr>
<tr>
<td>(\log(k_{O3}))</td>
<td>(\log(k_{O3}) = 2.452 - 46.811f(+)_p + 3.517q(C)s + 11.734E{HOMO} MLR)</td>
<td>0.723</td>
<td>0.604</td>
<td>(N = 27/5). Various compounds among dyes, fertilizers, pharmaceuticals in refinery wastewater (pH = 7)</td>
<td>125</td>
</tr>
</tbody>
</table>

\(a \) AMW: average molecular weight, \(n_{AOMER} \) number of phenolic groups (aromatic hydroxyls), \(\sigma_{OMe}^b \); \(\sigma_{OMe}^m \); Hammett substituent constants, \(\sigma^b \): Taft substituent constants, \(E_{HOMO} \): energy of the highest occupied molecular orbital, DBE: double bond equivalence, WPSA: weakly polar component of solvent accessible surface area, IP: ionisation potential, \(f(0)_s, f(0)_p, f(+)_s, f(+)_p \): Fukui reaction indices, \(q(C)_{min} \); \(q(C)_s \): minimum and maximum of the most negative partial charge on a main-chain carbon and carbon/nitrogen atom (non-uniformity of electric charge). \(b \) \(r^2 \) and \(q^2 \) denote the Pearson correlation coefficient for the training and the testing set, resp.

Reaction with singlet oxygen (\(^1O_2 \))

General. Singlet oxygen (\(^1O_2 \)) can be generated from (solar) irradiation of DOM-rich water25 as well as from reactions between ozone and biomolecules128 and can reach steady state concentrations [\(^1O_2 \)ss] in surface waters of 7 to 11 \(\times 10^{-14} \) M in summers. Calculations show that \(^1O_2 \) contributes significantly to long-term degradation in surface water, making QSPRs essential for fate predictions.25 From the literature, 11 QSPRs were found for oxidation by \(^1O_2 \). Importantly, the most recent MLR QSPR by Arnold et al. (2017)129 does not cover cationic organic functional groups, for which models are yet to be developed. Though no QSPRs exist for a heterogeneous (multifunctional anionic and cationic) set of compounds, recent methods are discussed below. Full information about \(^1O_2 \) QSPRs can be found in the ESI9.7

Descriptors. The recent QSPR by Arnold et al. (2017)129 for phenols and phenolates (\(N = 87; r^2 = 0.71 \)) used the one-electron oxidation potential from DFT calculations. Earlier, Gramatica et al. (2005)132 developed a similar model (\(N = 19; r^2 = 0.935 \)) using \(E_{HOMO} \) and an autocorrelation descriptor (R3+) using MOPAC and Dragon (ESI7). The oldest model by Rorije and Peijnenburg (1996)135 for phenols used electronic properties from MO calculations and other physicochemical properties (\(N = 21; r^2 = 0.871 \)). These studies indicate that a larger batch of descriptors should be screened to predict \(^1O_2 \) reaction with broader chemical functionalities.

Algorithms. All QSPRs found were regressions. Useful inter-dataset correlations have been found between QSPR endpoints,
including the Canonica et al. (2003) regression between $^1\text{O}_2$ and ClO$_2$ ($r^2 = 0.95$) for substituted phenols, indicating that similar algorithms for modeling $^1\text{O}_2$ and ClO$_2$ reactions may apply.

Direct photolysis (quantum yield) and molar absorption

General. Upon irradiation using UV or sunlight, direct and indirect photolysis can occur. Direct photolysis, i.e. loss of pollutants due to the direct solar or ultraviolet (UV) irradiation, is usually described through molar absorbance (e_λ) and corresponding quantum yield (Φ_λ), whereas indirect photolysis involves reaction with radiation-generated RIs. Most models collected for quantum yield were developed only for hydrophobic aromatics (Table ESI7†). The only model partially applicable to IOCs was the MLR quantum yield QSPR developed by Juretic (2013) for single-benzene ring compounds with various types (hydroxy-, chloro-, nitro-, methyl-, carboxyl-, sulfo-, amino-, etc.) and varying numbers (1–4) of substituents ($N = 23; r^2 = 0.823$).

Descriptors. Juretic et al. (2013) showed that the molecular symmetry relative orientation and asymmetry of hydrophobic groups were the two most influential descriptors for quantum yield. e_λ depended on the overall number of bonds, and particular atom-centered fragment related to substituents possessing double and single bonded heteroatoms (O or N) to C atoms, as well as the shape and size of the molecule and polarizability. For the unpublished QSPRs by Wols and Vries (2012) 5 descriptors were selected but their significance was relatively low. The results show that a larger batch of descriptors should be screened for potential relevance to the quantum yield and molar absorption of multifunctional IOCs.

Algorithms. Interestingly, Wols and Vries (2012) attempted to develop QSPRs for molar absorption ($N = 123; r^2 = 0.53$) and quantum yield for diverse emerging micropollutants ($N = 108; r^2 = 0.49$) using GAs and MLR, and found that predictions were improved by classifying the compounds into different groups.

These studies indicate that alternative QSPR algorithms such as ANNs and random forests (RFs) may be needed to accurately predict Φ_λ and e_λ.

Abiotic hydrolysis

General. Chemical hydrolysis involves ‘attack’ by the electron-rich oxygen atom (nucleophile) of water molecules on an electron-poor (electrophilic) central atom. A total of 67 QSPRs were found for abiotic hydrolysis, of which satisfactory QSPRs are discussed here (for full information, see the ESI†). Firstly, the HYDROWIN program of the US EPA’s EPI Suite, calculates second-order acid or base-catalyzed hydrolysis rate constants at 25 °C in water for various chemical classes using LFERs and data from Mill et al. (1987). Five class-specific hydrolysis models exist for brominated alkanes ($N = 16; r^2 = 0.770$), esters ($N = 103; r^2 = 0.974$), carbamates ($N = 62; r^2 = 0.973$), allyl/phenyl-carbamates ($N = 18; r^2 = 0.903$) and (p-subst.) benzonitriles ($N = 14; r^2 = 0.858$)† see Table ESI5†. Secondly, the SPARC program calculates hydrolysis for acid and base-catalyzed transformation and neutral catalysis under variable conditions (temperature, solvent or mixture, and catalyst) for carboxylic acid ($N = 654; r^2 = 0.96$) and $N = 667; r^2 = 0.97$ (acid-catalyzed)) and phosphoric acid ester ($N = 83; r^2 = 0.93$ (base-catalyzed)) hydrolysis.

An additional QSPR was extracted from the QSARDB repository (ID: Q8-10-30-265) for heterogeneous chemicals ($N = 166; r^2 = 0.715$). The data were gathered from the report by Mackay et al. (2006) including quantitative and semi-quantitative data from different sources, some lacking meta-data. Because experimental protocols were not provided, ‘hydrolysis’ could imply reaction by both H_2O and *OH. Furthermore, a PLSR model by Tsuyuri et al. predicts hydrolysis for various kinds of chemicals ($N = 103$, of which 32 are stable against hydrolysis) including carbamate, triazine, chloroacetanilide and organophosphate pesticides ($q^2 = 0.615$). Finally, a MLR model by Narasimhan et al. (2006) predicted hydrolysis rate constants of 37 benzoglycolamide ester prodrugs ($r^2 = 0.823$). The PLSR and MLR models by Tsuyuri et al. and Narasimhan et al. are not recommended due to their low performance.

Descriptors. EPI Suite’s hydrolysis LFERs were constructed using Hammett, Taft, pK_a and the net charge on phosphorus (for phosphate esters), whereas SPARC is commercial software and descriptors are unknown. Though descriptors were unknown, comparison of 124 ester compounds showed that SPARC performs slightly better than EPI Suite based on correlation ($r^2 = 0.98$ and 0.965, resp.) and mean unsigned error, but has a lower frequency of potential significant outliers.

QSPR algorithms. HYDROWIN uses the LFER methodology, whereas SPARC algorithms are based on fundamental chemical structure theory by parametrization of intra- and inter-molecular interactions linked by appropriate thermodynamic relationships. Hydrolysis depends on the presence of a hydrolysable chemical group (e.g. esters, amides, imides, carbamates, sulfonamides, ureas, nitriles, epoxides, etc.) with different relative reactivities, depending on steric, electronic and resonance effects of the chemical and the acidity/alkalinity of the medium. For example, esters are hydrolyzed more readily than amides because the nitrogen atom of amides is a better electron donor by resonance which decreases the reactivity of amide carbonyl to hydrolytic attack. The HYDROWIN LFERs are strictly limited to homologous compounds because of the class-specific sensitivity of the chemical reaction, as indicated by the varying slopes and intercepts of the regressions.

Homogenization of datasets for abiotic degradation

Reviews exist that list environmentally relevant oxidants in surface-, waste- and drinking water. Chemical treatment of wastewater includes chlorination, ozonation and UV treatment (standalone or combined with peroxidation), whereas other chemical additives are relatively rare (e.g. sulfate radical and chromium). RIs formed from chemical additives include hydroxyl radicals (*OH), singlet oxygen ($^1\text{O}_2$) and hypochlorous acid (HClO/ClO$^-$), whereas chlorine dioxide (ClO$_2$), ozone (O$_3$) and hydrogen peroxide (H$_2$O$_2$) can react directly with the chemical. Other relevant reactive intermediates include carbonate radicals (CO$_3^{2-}$), triplet organic matter (^3OM), superoxide (O$_2^{*-}$) and sulfate radicals (SO$_4^{2-}$). QSPRs have been applied to modeling the reactivity of pollutants towards...
chemical additives and RIs, though research has mostly focused on modeling advanced oxidation processes including ozonation, chlorination and UV/H2O2 treatment and direct photolysis (i.e. quantum yield Φ). Available QSPRs have varying degrees of applicability towards IOCs (ESI†). 139,140,141,144 ‘Abiotic degradation’ is a summation of all non-microbial processes, i.e. chemical water treatment, direct/indirect photolysis, abiotic hydrolysis and thermal degradation. Combining all terms for all abiotic reaction processes results in the following expression:

$$
 k = \sum_{i} k_{2nd}^{\text{CA}_i} + 2.303 \int_{0}^{T} \Phi_i \, dt \quad + \sum_{j} k_{2nd}^{\text{RI}_j} + k_{1st}^{\text{H}_{\text{hydr}}} \\
$$

(2)

where the first, second, third and fourth terms represent the removal rate through chemical additives (CAS), direct photolysis, reactive intermediates (RIs, i.e. indirect photolysis and by chemical treatment), and abiotic hydrolysis, respectively.145

During wastewater treatment, water chemistry, organic matter and natural/artificial light contribute towards the generation of RIs including *OH and 1O2.146 Due to their influence on generation of these RIs, environmental conditions can greatly influence the overall removal. The result is that a model built using a homogeneous but non-representative dataset may falsely predict high removal, e.g. because a different RI acts as the primary reagent.147 Apart from modeling reactivity towards specific RIs, other strategies focus on total reactivity. Illustratively, in the ‘total photolysis’ QSPRs by Beiknejad et al. (2014)148 and loele et al. (2009)149 for azo dyes ($N=18$; $r^2=0.9231$) and 1,4-dihydropyridine drugs ($N=19$; $r^2=0.87$) degradation mechanisms are ‘summed’, and the same may apply for QSPRs predicting removal efficiencies chlorination and ozonation (ESI†). Moreover, Sudhakaran et al. (2012) showed that 4 different descriptors (MON, EA, #X, and #ringatoms) could be applied for ozonation and AOP depending on the river water type. Such QSPRs may have very narrow applicability since they do not consider individual RIs that form during the degradation process, but rather the total removal resulting from the chemical additive. Careful selection of such datasets is needed based on the methodology and medium applied to assure correct combination of QSPRs in degradation frameworks.

Perhaps the most studied influencing parameters for abiotic degradation processes are temperature and pH. The only QSPR model available for ozonation under acidic conditions (pH = 4) was from Zhu et al. (2015) and hence should be used under such conditions.139 Whereas the effect of pH can be accounted for by the Henderson–Hasselbalch equation (eqn (1)), temperature dependence is associated with every degradation process. For most organic pollutants, the effect of temperature is accounted for through the Arrhenius relationship and its derivations. The Arrhenius relationship can be used to standardize QSPR datasets by applying temperature corrections as was done by Li et al. (2014) for the reaction with *OH standardized to 298 K.140

$$
 k = A \exp \left(\frac{-E_a}{RT} \right) \\
$$

(3)

where k_1 and k_2 are the reaction rate constants at temperatures T_1 and T_2, R is the universal gas constant, and E_a is the activation energy. It has been shown that the Arrhenius equation is applicable for biological treatment systems.150 E_a of most organic decomposition reactions fall in the range of 50 to 100 kJ mol$^{-1}$ (12 to 24 kcal mol$^{-1}$), with a typical value of about 79 to 84 kJ mol$^{-1}$ (19 to 20 kcal mol$^{-1}$).151 However, activation energies are reagent specific, with E_a of aqueous O_3, *OH and 1O2 reactions in the range of 35–50,152 10–15 (ref. 153) and 25–55 kJ mol$^{-1}$.154 Using such ranges, it is possible to estimate temperature effects on compound decomposition when activation energies are unknown. Illustratively, modeling efforts using specific temperature ranges ($T = 22–25 \, ^\circ\text{C}; T = 25 \, ^\circ\text{C}$) yielded constructive results.154

Biotic degradation

General

For most organic chemicals, biodegradation is the principal abatement process in aquatic environments and influences their behavior and associated toxicity in aquatic ecosystems.155,156 Biodegradation can be distinguished in e.g. (1) mineralization (of e.g. H2O2 CO2, CH4 and urea), or (2) primary biodegradation (i.e. removal of the parent).157,158 Importantly, values can differ greatly between biodegradation definitions, especially in the case of incomplete mineralization.159 Aerobic mineralization has been investigated best, with standardized tests such as the OECD test series available.159,160 In such tests, unspecified microorganisms interact with the test compound and its (mostly unknown) degradation products. Biodegradation is monitored by O2 consumption, CO2 evolution, radioactivity measurement, or DOC removal. Results for mineralization (in %) are often categorized into ‘readily’ or ‘not readily’ biodegradable. The field of biodegradation modeling was repeatedly reviewed,159,161,162,163,164,165,166 and evaluation of classification methods has been done before.159,167 Popular models include VEGA, EPISuite’s BIOWIN, TOPKAT and START which were recently evaluated for personal care products, and multifunctional organics ($N=722$) by Boethling et al. and Pizzo et al.168,170 Based on prediction accuracy, VEGA performed best.171 Various other classification QSPRs exist but have not been externally evaluated.172 Most of the current classification models use structural fragments of a variety of organic compounds. In fact, organic compounds are structurally highly diverse, so a chemical with new structural features may not be treatable by a classification QSPR, especially since many transformation reactions occur in the mineralization pathway. A different line of research tries to describe and predict products and pathways of biodegradation without focusing on quantification, such as EnviPath and EAWAG-BBD.173,174 Better understanding and more precise mineralization predictions require pathway prediction and biotransformation rates to be combined. To our knowledge, the only model accounting for both is CATALOGIC which performed better than Biowin6,
Multicase and the PLS model of Loonen et al.164,177–177 Many of the available biodegradation QSPRs are not within the scope of this review as they either predict mineralization, or give biodegradation classifications or probabilities.4,5 For example, Yin \textit{et al.} (2007) and Greaves \textit{et al.} (2001) developed QSPRs for the removal (\%) of acid dyestuffs ($N = 20$; $r^2 = 0.81$)178 and anionic water soluble dyes ($N = 103$; $r^2 = 0.593$)179 (ESI2†). In contrast, QSPRs built on primary biodegradation may be more reproducible since their described process is less complex.

A total of 33 QSPRs were found for primary biodegradation. However, no QSPRs fully passed the selection criteria; hence, the best QSPRs predicting (pseudo-)first order or second-order rate constants (or equivalent) for biodegradation of the parent compound in aqueous media are given in Table 5. The largest dataset on principal biodegradation was used by Dimitrov \textit{et al.} (2011) who developed the CATALOGIC framework predicting biodegradation pathways and giving semi-quantitative estimations for the removal of the parent compound ($N > 500$ individual transformations; $r^2 = 0.79$).177 Rapid biotransformation was predicted to occur for oxiranes, ketenes, acyl halides, thio-carboxylic acids, hydroperoxides, nitrenes and geminal diols. Apart from primary half-life, CATALOGIC provides results for BOD (\%), ultimate half-life (days), quantities of parent and biodegradation products, and AD details. Media included in CATALOGIC datasets were wastewater, surface water and soils. A different QSPR by Tamm \textit{et al.} (2010) predicts the biodegradation half-life of organic pollutants including aromatic, aliphatic and cyclic amines, ketones, alcohols and esters ($N = 146$; $r^2 = 0.87$)180,181 using 1D, 2D, and 3D theoretical and QC descriptors (at AM1 level). Data for this QSPR were extracted from the report Mackay \textit{et al.} (2006),182 containing primary biodegradation data from both mixed and pure bacterial cultures, heterogeneous test media, and estimations from die-away tests. Burgis (2012) developed QSPRs183 for the pseudo first-order biodegradation rate constant in activated sludge, using nine different literature studies ($N = 65$; $r^2 = 0.49$), and divided into three smaller subsets ($r^2 = 0.97$; 0.88; 0.90). Tebes-Stevens and Jones (2004) developed a QSPR184 for microbial reductive dehalogenation of chlorinated benzenes and phenols in sediment systems ($N = 24$; $r^2 = 0.67$).

\textbf{Descriptors.} QSPRs were generated using both chemical descriptors and Hammett/Taft substituent constants (Table 5). Descriptors selected by Tamm \textit{et al.} relate to the charge distributions of the compound, \textit{e.g.} fractional positive surface area (FPSA\textsubscript{3}), negatively charged surface area, and partially charged surface area of H atoms, molecular weight, the number of halogenide groups and the lowest resonance energy (AM1) for C–Cl bonds.41,180 These descriptors are intuitive since biodegradation has been shown to be influenced more by electronic properties and functional groups (\textit{e.g.} branching and halogenation), rather than by hydrophobicity.185–185 Other descriptors used are pKa, van der Waals radius, molecular weight, and sigma inductive constants. Though the QSPR by Damborsky \textit{et al.} (1997)184 for phenols and anilines was developed using data from cultured bacterial strains from surface water ($N = 15$; $r^2 = 0.955$), it provided mechanistic insight \textit{via} its descriptors. Though their narrow AD limits their general applicability (Table 5), it is known that large and highly charged compounds are often non-biodegradable, potentially due to low bio-uptake.7,182,186

\textbf{QSPR algorithms.} For biodegradation various methods seem to be able to acquire reasonable results. Model techniques include regression-type QSPRs and ANNs. For surface waters, both the models by Tamm \textit{et al.} (2010) and Dimitrov (2011)41,177,180 may be applicable to IOCs due to their relatively large datasets. Though CATALOGIC likely has similar performance to the model by Tamm \textit{et al.} (2010), there is little public information on the chemical space of the training set and on the model structure, making it impossible to evaluate the relative performance of various algorithms for primary biodegradation of IOCs.

\textbf{Dataset homogenization.} Much effort has been invested in standardizing biodegradation tests.179,180 While in standardized tests such as the closed bottle test (CBT, OECD-301D) or the MITI-I test (OECD-301C) the amount of inoculum is prescribed (though not rigidly), its nature (the identity of bacteria) remains undefined.41 From a chemical viewpoint, a compound’s reaction rate is a function not only of its chemical structure and reaction conditions, but foremost of its reaction partner, \textit{i.e.} bacteria and their relevant enzyme(s). The diversity of microorganisms potentially able to degrade chemicals and the diversity of their catabolic enzymes are large187 but can be very specific. For example, Domaradzka \textit{et al.} (2015) observed specific degradation and concluded that only a few microorganisms may be able to degrade drugs.188 The set of bacteria present in a sediment, sewage treatment plant or groundwater varies from site to site and over time. Moreover, the respective physical and chemical conditions (including the test substance) can exert pressure to which species in a microorganism population react in different ways. The only QSPR for biodegradation in wastewater made available by Burgis (2012) did not pass the selection criteria when data from different WWTPs were pooled. Possible reasons for low performance were the lack of information in the literature describing the methods and conditions for sludge biodegradation kinetic experiments.184 Clearly, biodegradation data are comparable only if obtained using the same microbial inoculum. This notion has been adopted by several authors stating that data, in particular those from BOD screening tests, are “poorly reproducible”.162,166,189–192 A positive biodegradation result conflicting with negative results may not necessarily be wrong. Rather, it may be caused by the presence of specific bacteria that are rarely encountered. For many compounds only a single biodegradation result from an insufficiently characterized inoculum is available; hence, we cannot decide on its reliability. Since reproducibility is a minimum requirement for scientific data, most biodegradation tests cannot be considered scientifically rigorous, and models built thereon have little structural generality and are of questionable justification.2 Future work should focus on the development of testing strategies to obtain robust biodegradation data, using more standardized inoculums and conditions. Subsequently, advanced data analysis may be used to disentangle the major factors involved.193

Apart from the microbial inoculum and its catabolic enzymes, biodegradation is dependent upon temperature, degree of acclimation, metabolic cofactors (O$_2$, nutrients, etc.), cellular
<table>
<thead>
<tr>
<th>Endpoint</th>
<th>QSPR equation(s), algorithm(s), and descriptor(s)</th>
<th>(r^2)</th>
<th>(q^2)</th>
<th>Training/test set size and description of chemical space</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_b)</td>
<td>(\log(k_b) = -11.233 r_W + 0.31467 p K_a - 12.738 \text{ PLSR})</td>
<td>0.955</td>
<td>0.949</td>
<td>(N = 15). Phenols and anilines. Degradation of anilines by an unknown bacterial strain from the Oconee River.</td>
<td>183</td>
</tr>
<tr>
<td>(D_{T50})</td>
<td>Artificial Neural Network (ANN) descriptors: FPSA3, (E^{C-Cl}\text{minres}), (M_w), NCSA, (n{\text{Hal}}), PCSAH</td>
<td>0.87</td>
<td>0.7</td>
<td>(N = 126/20). Diverse set of organic pollutants (aromatic, aliphatic and cyclic amines, ketones, alcohols, esters, etc.). Biodegradation half-life ((D_{T50}), hours) in water</td>
<td>41 and 180</td>
</tr>
<tr>
<td>(D_{T50})</td>
<td>CATALOGIC (commercial) various algorithms and descriptors used</td>
<td>0.79 (half-lives); 0.84 (BOD)</td>
<td>0.88 (BOD)</td>
<td>(N \geq 500) principal transformations; 109 + (x) (2 datasets). Various organic chemicals. (\log(K_{\text{ow}}) \in [2.4, 20]), (M_w (\text{Da}) \in [67, 700]). Biodegradation half-life ((D_{T50}) in days, assuming 1st order kinetics) of the primary compound as well as a range of other relevant endpoints and pathways</td>
<td>164 and 177</td>
</tr>
<tr>
<td>(k_b)</td>
<td>(\log(k_b) = 0.935 \log(K_{\text{ow}}) - 1.17 \sum(\sigma) + 3.09 \mu_{\text{ortho}} + 0.920 \mu_{\text{meta}} - 4.61 \text{ MLR})</td>
<td>0.67</td>
<td>—</td>
<td>(N = 24). Chlorinated benzenes and phenols (sorption-corrected biodegradation 1st order rate constant)</td>
<td>182</td>
</tr>
<tr>
<td>(k_b)</td>
<td>(\log(k_b) = 5.254 - 0.00000029 \sigma_{\text{total}} + 0.4178 \sigma_{\text{HOMO}} - 0.07669 \mu_{\text{dipole}} - 0.00173 \mu_{\text{HOMO}} - 0.01654 \text{A area} + 0.0315 \text{M area} - 0.01142 M_w \text{ LR})</td>
<td>0.49 (full dataset); 0.97, 0.88, 0.90</td>
<td>—</td>
<td>(N = 82) (65 unique compounds). Various micropollutants including pharmaceuticals. Activated sludge media. Biodegradation pseudo-1st order reaction rate constant</td>
<td>181</td>
</tr>
</tbody>
</table>

\(r_W \): van der Waal’s radii; \(p K_a \): proton dissociation constant; \(M_w \): molecular weight; FPSA3: fractional PPSA (PPSA-3/TMSA) (Zefirov) unless fractional positive surface area, \(E^{C-Cl}_{\text{minres}} \): lowest resonance energy (AM1) of C–Cl bonds, NCSA: Negatively Charged Surface Area (Zefirov), \(n_{\text{Hal}} \): number of halogenide groups, PCSAH: Partially Charged (Zefirov) Surface Area of H atoms, \(\sigma \): Hammett sigma constants, \(K_{\text{ow}} \): octanol–water partition coefficient, \(\mu_{\text{ortho}} \): sigma inductive constants for the ortho substituents, \(\mu_{\text{meta}} \): sigma inductive constants for the meta substituents, \(\sigma_{\text{total}} \): total E: total molecular energy, \(\sigma_{\text{HOMO}} \): energy of the highest occupied molecular orbital, dipole: dipole strength, HoF: heat of formation, A area: accessible surface area, M area: molecular surface area. \(k_b \) and \(D_{T50} \) denote the second/pseudo-first order biodegradation rate constant and half-life, resp. \(r^2 \) and \(q^2 \) denote the Pearson correlation coefficient for the training set and test set, resp. \(a \) Only considers the first oxidation step by monooxygenase (phenols) and dioxygenase (anilines). Phenols were degraded by \textit{Pseudomonas putida U.}
transport, chemical partitioning, abiotic hydrolysis, etc.35 Though QSARs for overall biodegradation are useful, separation of biotransformation processes (membrane transport, enzymatic binding and reaction), and distinction between different transformation reactions, i.e. oxidation, conjugation, etc., may improve predictions and provide further mechanistic insight.194 However, these variables are difficult to control, and the structure of the resultant degradation products is often difficult to assess. Illustratively, Carballeira et al. (2006) and Carballeira et al. (2004) applied 3D-QSAR/CoMFA modelling to enzyme–ligand systems to predict for pure cultures the oxidation and reduction efficiencies (in %) of carboxyls and alcohols ($N = 46$; $q^2 = 0.549-0.798$),194,195 which may be explored further to include mixed cultures as well. Additional shortcomings include the lack of disentanglement between simultaneous degradation and sorption, obscuring the mechanism and extent of removal. In the case of soil or sediment tests, variable water/solid ratios cause the formation of anaerobic areas, and influence diffusion-driven substance transport in the test system. As the datasets used by both Tamm et al. and Dimitrov et al. (Table 5)177,180 included soil and sediment data, their QSARs may be fitted to include sorption processes. Illustratively, the successful Tebets-Stevens and Jones (2004) QSAR for biodegradation in sediment systems was developed by correcting the data for sorption.196 Tests like OECD 309 with a low concentration of suspended solids may be valuable for assessing chemical fate in aquatic environments.196

Bioconcentration factor

General. Here, the bioconcentration factor (BCF) is defined as the accumulation of a chemical in or on an organism when the source of the chemical is water.197 Bioconcentration plays an important role in the regulatory assessment and is useful as a first estimate of internal concentration.198 Tested organisms include various fish species as well as *Daphnia magna* and *Gammarus pulex*. A total of 154 QSARs were found for bioconcentration, of which 96 were specifically for fish, 10 for water fleas, 9 for algae, and the remaining QSARs for other organisms such as water louse, mussels, and aquatic plants. For prediction of the fish BCF, correlation coefficients are highly variable depending on the compound class and on the number of compounds used to develop the relationship (see the ESI11). QSARs for the BCF in fish applicable to IOCs are given in Table 6 and described below. Although none of the models for other aquatic species met our selection criteria, the ‘best performing’ models are also discussed.

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>QSPR equation(s), algorithm(s), and descriptor(s)</th>
<th>r^2</th>
<th>q^2</th>
<th>Compound class(es)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCF$_{fish}$</td>
<td>Integrated model relying on the predictions CAESAR and Meylan, together with the Applicability Domain Index (ADI) provided by VEGA</td>
<td>0.83</td>
<td>—</td>
<td>$N = 585$. Diverse organic chemicals</td>
<td>200</td>
</tr>
<tr>
<td>BCF$_{fish}$</td>
<td>CAESAR (hybrid QSAR) descriptors: Mlog P, BEHpt2, AEige, GATS5v, Cl-089, X0sol, MATS5v, SscI</td>
<td>0.79</td>
<td>—</td>
<td>$N = 483$. Diverse organic chemicals</td>
<td>200</td>
</tr>
<tr>
<td>BCF$_{fish}$</td>
<td>log(BCF) = $\log[10f_a \exp(0.62 \log K_{ow} - 0.15) + 10f_a \exp(0.28 \log K_{ow} - 0.07pK_a - 0.84)]$</td>
<td>0.76</td>
<td>0.75</td>
<td>$N = 44/21$. Monovalent cations</td>
<td>202</td>
</tr>
<tr>
<td>BCF$_{fish}$</td>
<td>Artificial Neural Network (ANN) descriptors: CIQplog S, M_m, QPlogHERG, #stars, QPPCaco, WPSA, IP, #noncon, #rtFG</td>
<td>0.76</td>
<td>0.60</td>
<td>$N = 851$. Diverse organic chemicals</td>
<td>201</td>
</tr>
<tr>
<td>BCF$_{fish}$</td>
<td>CORAL descriptors: $n_{c_{branch}}$, HALO, $<C_{branch}$, 1RING, N_{branch}</td>
<td>0.731</td>
<td>0.635</td>
<td>$N = 608/152/76$. Large variety of organic chemicals including 138 ionizable chemicals</td>
<td>200</td>
</tr>
<tr>
<td>BCF$_{fish}$</td>
<td>log(BCF) = $\log[10f_a \exp(0.64 \log(K_{ow}) - 0.12) + 10f_a \exp(0.37 \log(K_{ow}) + 0.66pK_a - 0.51)]$</td>
<td>0.69</td>
<td>0.53</td>
<td>$N = 49/24$. Monovalent anions</td>
<td>202</td>
</tr>
<tr>
<td>BCF$_{fish}$</td>
<td>Meylan log(BCF) = $-1.37b \log(K_{ow}) + 14.4 + \sum F_i$ LRs</td>
<td>0.62</td>
<td>0.73</td>
<td>$N = 694$. 610 non-ionc compounds; 84 ionic compounds</td>
<td>199</td>
</tr>
<tr>
<td>BCF$_{fish}$</td>
<td>BCFBAF v3.01 log(BCF) = $a + b \log(K_{ow})$ LRs</td>
<td>—</td>
<td>—</td>
<td>$N = 527$. 466 non-ionc and 61 ionic compounds (carboxylic acids, sulfonic acids, and quats)</td>
<td>54 and 207</td>
</tr>
</tbody>
</table>

aK_{ow}: Mlog P: Morishige log of the octanol-water partition coefficient, pK_a: proton dissociation constant, BEHpt2: highest eigenvalue no. 2 of Burden matrix, weighted by atomic polarizabilities, AEige: absolute eigenvalue sum from the electronegativity weighted distance matrix, GATS5v: Geary autocorrelation – lag 5/weighted by atomic van der Waals volumes, Cl-089: CI atoms attached to Cl(sp3), X0sol: solvation connectivity index chi-0, MATS5v: Moran autocorrelation – lag 5/weighted by atomic van der Waals volumes, SscI: sum of all (-CI) e-state values in the molecule, f_a: fraction of their neutral species, $n_{c_{branch}}$: carbon atom involved in the aromatic system, HALO: absence of fluorine, chlorine, and bromine, $<C_{branch}$, branching from aromatic carbon connected to other carbon in the aromatic system, 1RING: presence of one ring, N: presence of nitrogen atoms, CIQplog S: conformation-independent predicted aqueous solubility, M_m: molecular weight, QPlogHERG: IC$_{50}$ value for blockage of HERG K channels, #stars: druglikeness, QPPCaco: apparent Caco-2 cell permeability, WPSA: weakly polar component of the SASS (halogens, P, and S), IP: ionization potential (PM3), #noncon: number of ring atoms unable to form conjugated aromatic systems (e.g. sp3 Cl), #rtFG: number of reactive functional groups, and F_i: structure-based correction factor. b, r^2 and q^2 denote the Pearson correlation coefficient for the training set and test set, resp.
All QSPRs for the BCF in fish were developed using large datasets for multiple fish species and exposure regimes and thus have broad applicability. QSPRs including a significant proportion of IOCs were the Meylan, CORAL and CAESAR models. Building on this work, Gissi et al. (2013) developed a consensus model based on CAESAR and Meylan, and an ANN QSPR using a similar dataset. A QSPR by Arnot and Gobas (2003), i.e. BCFBAF v3.01, included ionic compounds ($N = 466$, of which 61 ionic) but no statistical parameters could be found. Fu et al. (2009) developed QSPRs specifically for monovalent anions ($N = 73$; $r^2 = 0.69$) and monovalent cations ($N = 65$; $r^2 = 0.76$).

Seto and Handoh provided an overview of algal-K_{ow} relationships. Of the total 9 models gathered for the BCF in algae, the QSPR by Geyer et al. (1984) had the widest AD with $0.6 \geq \log(K_{ow}) \geq 6.4$ ($N = 41$; $r^2 = 0.81$), and included pesticides, polar compounds and other organics. Two QSPRs for the BCF in water fleas by Meredith-Williams et al. (2012) were developed for IOCs ($N = 6$) using the liposome/water distribution coefficient ($r^2 = 0.89$) and pharmacological volume of distribution ($r^2 = 0.5$). A QSPR for the BCF in aquatic plants by Lockhart et al. (1983) ($N = 10$; $r^2 = 0.91$) for Lemma minor (common duckweed) included hydrophilic pesticides and PCBs. All the developed QSPRs for the BCF in crustaceans were for hydrophobic chemicals (PAHs, PCBs, and pesticides) only (ESI†).

Descriptors. Bioconcentration is generally favorable when the free energy of interaction between the sorbent and sorbate is negative with interaction in various biological tissues driven by enthalpy and entropy. The classical method to predict the BCF involves its inherent relationship with hydrophobicity as expressed by K_{ow}. For IOCs however, very diverse molecular interactions play a role and recently developed QSPRs include such compounds (and descriptors) as well. The 9 QikProp descriptors selected in the most recent model by Gissi (2013) were molecular weight, solubility, hERG K^+ channel blockage, druglikeness, Caco2 cell permeability, the weakly polar component solvent accessible surface area, ionization potential, the number of non-conjugated aromatic ring atoms, and the number of reactive functional groups which relate to passive and active uptake as well as pharmacokinetic and dynamic processes. Both Meylan (1999) and Arnot and Gobas (2003) used K_{ow} in class-specific linear regressions. CORAL used SMILES-based descriptors and CAESAR used Dragon descriptors but details were unknown. Since Fu et al. acquired satisfactory regressions based only on the fraction ionized, pK_a and K_{ow}, alternative descriptors such as the lipid/water partitioning coefficient may be used to optimize predictions. Though no adequate QSPRs exist for non-fish species, Qin et al. (2010) used regression with K_{ow} and a polarity descriptor to predict uptake in seven aquatic species, including *Aliivibrio fischeri*, river bacteria, algae, *Daphnia magna* and fish. The results indicated that anionic compounds can be easily absorbed into unicellular organisms, but this is not the case for multicellular *D. magna* and fish. However, chemical uptake may be slow relative to phytoplankton growth, preventing thermodynamic equilbrium in algal cells.

QSPR algorithms. The BCF in fish has been predicted using regression-type QSPRs and ANNs, both capable of producing satisfactory results. The QSPRs of CORAL, Meylan et al. (1999), CAESAR, BCFBAF and Gissi et al. (2013) had comparable performances, with slightly better statistics than recent QSPRs (Table 6). Given the diversity of chemicals and variability in biological (fish) species as well as algorithms used, predictions by these global QSPRs are likely close to optimal. The local LR models by Fu et al. (2009) for monovalent cations and anions are preferred in case the query compound is ionizable. In the case of the Fu et al. dataset, algorithms and methods such as ANNs or FCMs in combination with a broader batch of chemical descriptors may be used to optimize predictions.

Dataset homogenization. Variability in experimental conditions can alter the outcome of a bioconcentration experiment with important factors and processes for IOCs in fish being pH, dissolved organic matter (DOM), the contaminant concentration, the presentation of co-contaminants and temperature. The relative importance of these factors in turn depends on the chemical and fish species used because dissociation/association, speciation and physiological characteristics influence bioavailability. Standardizing the BCF data for pH may involve determining separately the BCF for both ionized and unionized fractions, using the Henderson–Hasselbalch equation (eqn (1)) or additional experimentation. Standardizing for sorption to DOM would involve calculating the *in situ* freely available fraction of the pollutant using K_{oc} or K_d (see previous sections) for the DOM analogous to similar methods. However, as K_{oc} and K_d themselves are influenced by pH, a multispecies approach may be needed.

Apart from experimental conditions there are apparent intra- and inter-species differences in ADME (absorption, distribution, metabolism and excretion) processes for fish as well as non-fish species. In the case of IOCs in fish, distribution throughout the organism and excretion may be fast whereas biotransformation may be slow or has little influence on the BCF. Pooled QSPRs developed for various fish species do not consider the physiology of the various organisms. As a result, such pooled QSPRs have high applicability, but their prediction accuracy is reduced (see the ESI†). Important species characteristics influencing the BCF are body size, body surface/volume-ratio, elimination processes, lipid content, feeding and burrowing behavior and life history. Generally, exchange processes between the body and environment are relatively fast in small organisms with a low lipid content because of a relatively large surface/volume-ratio and an intensive blood circulation through the skin for oxygen uptake. Also, fish in early life stages tend to have higher specific rates of feeding, metabolism and specific surface areas. In contrast to QSPRs, PBTK models take into account ADME processes by mathematically describing anatomical, physiological, physical and chemical descriptions of these processes. For example, chemical uptake via the surface area of an organisms respiratory organs competes against chemical removal. In turn, chemical removal is a combination of loss via the respiratory surface, growth dilution, fecal excretion and metabolic biotransformation. Prediction methods exist for metabolic transformation as well as for tissue, plasma, organs, protein or lipid distribution. Such parameters can
be considered (largely) independent of physiology and hence are used to parametrize multiple species-specific PBTK models.223–225 Interestingly, Armitage et al. (2013) developed mechanistic BCF models specifically for anionic (N = 149; $r^2 = 0.68$) and cationic (N = 62; $r^2 = 0.75$) chemicals based on physiology (ESI1†).225

Conclusion

Many chemical fate processes simultaneously occur in environmental water matrices. For many of these processes quality fate data are lacking, and hence, fate properties need to be estimated using QSPRs. When applying QSPRs in prediction workflows and multimedia models, it is important to understand the context in which QSPRs are developed.26,226,227 Despite common validation by the developing authors, independent external evaluation and detailed AD assessment is performed only sporadically.65 Quantitative assessment of each models’ AD requires extraction, curation and reconstruction of the datasets used. Alternatively, a more efficient solution is a qualitative evaluation based on expert knowledge combined with \textit{ad hoc} AD characterization. To our knowledge, this is the first study that qualitatively evaluates a large collection of chemical fate QSPRs using a uniform methodology and metric. Evaluation of the relative performance of methods is hampered due to inhomogeneity in the datasets and metrics used. For several of the models evaluated the source code, dataset, and/or evaluation metrics were not publicly available, most often for commercial non-regression type models.277–278 If such models are to be used in regulatory assessments, the models and datasets require reconstruction or third party quality assessment.

For the majority of the relevant fate processes identified, quality QSPRs ($r^2 > 0.6; q^2 > 0.5$) exist that are applicable to IOCs (Table 7). Applicable sorption models exist for IOCs and wastewater solids, whereas sorption to sediment systems was inadequately covered. For relevant abiotic degradation processes, models for reaction with hydroxyl radicals (\textit{HO} \textit{H} \textit{O} \textit{H}), ozone (\textit{O} \textit{3}), hypochlorite and chlorine dioxide (\textit{HOCl} and \textit{ClO2}) were found applicable, whereas adequate models for direct photolysis/UV, reaction with singlet oxygen (\textit{1O2}) and secondary reactive intermediates were lacking. However measuring reaction rate constants and/or half-lives of all relevant intermediates is nearly impossible, and hence, prioritization is needed. There is a need to improve existing methods of estimating environmental primary biodegradation half-lives to provide greater confidence in chemical assessments.289 QSPRs for primary biodegradation in surface water exist. However, many ionizables are inherently non-biodegradable due to their charge and may constitute a boundary region of the chemical spaces included in these models. Adequate QSPRs for primary biodegradation of IOCs in wastewater sludge and sediment systems are lacking, but promising experimental, data curation, and modeling methods are available and need to be explored. Adequate bioconcentration QSPRs only exist for fish which the end-user should select based on the query compound and the chemical space of the QSPR. The success of algorithms used differed between the endpoints, but it seems that for some

Table 7

Summary of current strategies and knowledge gaps in QSPR modeling of fate properties for ionizable organic chemicals in aquatic matrices

<table>
<thead>
<tr>
<th>Process</th>
<th>Chemical/biological species</th>
<th>QSPR ($r^2 > 0.6; q^2 > 0.5$ and AD)</th>
<th>Test homogenization conditions</th>
<th>Process chemical/biological species</th>
<th>QSPR ($r^2 > 0.6; q^2 > 0.5$ and AD)</th>
<th>Test homogenization conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorption</td>
<td>Organic carbon (soil/sediment, K<sub>s</sub>, K<sub>a</sub>)</td>
<td>LFER; other</td>
<td>pH; temperature</td>
<td>Abiotic degradation (photolysis)</td>
<td>Water (\textit{K} \textit{h})</td>
<td>2 LFER; other</td>
</tr>
<tr>
<td></td>
<td>Wastewater solids and soil, K<sub>a</sub></td>
<td>1 (fugacity, pH)</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percent removal by adsorption; K<sub>a</sub></td>
<td>7</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abiotic degradation (photolysis)</td>
<td>*OH (direct photolysis)</td>
<td>MLR</td>
<td>pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*OH (indirect photolysis)</td>
<td>1 (fugacity, pH)</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OH (indirect photolysis; water treatment)</td>
<td>2 (AD partially covered)</td>
<td>(CO<sub>3</sub> \textit{2} \textit{2} \textit{2}, SI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other indirect photolysis and water treatment</td>
<td>3</td>
<td>LR; MLR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water (\textit{K} \textit{h})</td>
<td>6</td>
<td>LR; MLR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOCl; ClO<sub>2</sub> (chlorination)</td>
<td>LR, MLR</td>
<td>Substituent constants; pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOCl; ClO<sub>2</sub> (chlorination)</td>
<td>LR; MLR</td>
<td>Substituent constants; pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O<sub>3</sub> (ozonation)</td>
<td>LR, MLR</td>
<td>Other indirect photolysis and water treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other indirect photolysis and water treatment</td>
<td>LR; MLR</td>
<td>pH; acclimation, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water (\textit{K} \textit{h})</td>
<td>N/A</td>
<td>pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOCl; ClO<sub>2</sub> (chlorination)</td>
<td>N/A</td>
<td>pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O<sub>3</sub> (ozonation)</td>
<td>N/A</td>
<td>pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other indirect photolysis and water treatment</td>
<td>N/A</td>
<td>pH; acclimation, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water (\textit{K} \textit{h})</td>
<td>N/A</td>
<td>pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOCl; ClO<sub>2</sub> (chlorination)</td>
<td>N/A</td>
<td>pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O<sub>3</sub> (ozonation)</td>
<td>N/A</td>
<td>pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other indirect photolysis and water treatment</td>
<td>N/A</td>
<td>pH; acclimation, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water (\textit{K} \textit{h})</td>
<td>N/A</td>
<td>pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOCl; ClO<sub>2</sub> (chlorination)</td>
<td>N/A</td>
<td>pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O<sub>3</sub> (ozonation)</td>
<td>N/A</td>
<td>pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other indirect photolysis and water treatment</td>
<td>N/A</td>
<td>pH; acclimation, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water (\textit{K} \textit{h})</td>
<td>N/A</td>
<td>pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOCl; ClO<sub>2</sub> (chlorination)</td>
<td>N/A</td>
<td>pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>O<sub>3</sub> (ozonation)</td>
<td>N/A</td>
<td>pH; temperature</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other indirect photolysis and water treatment</td>
<td>N/A</td>
<td>pH; acclimation, etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
endpoints a specific algorithm applies (e.g. ANNs for K_d, and FCMs and LR for several abiotic degradation mechanisms). This can be explained by the relative non-linearity and interdependencies between predictors used and the endpoints.

Whereas the properties of chemicals are often the theoretical basis of QSPRs, environmental factors affect test systems and create variability in the data, often in non-linear ways. In the absence of a homogeneous dataset, variability in environmental factors can greatly influence model predictions, especially in the case of IOCs. Illustratively, photolysis and tertiary treatment QSPRs predict removal as a summation of reaction processes, but due to high sensitivities and variability in chemical/biological and environmental species involved, such QSPRs have narrow applicability. QSPRs should be developed for standardized matrix characteristics that are most relevant and representative of field conditions. Modeling persistence ideally involves determining with relative certainty the reactivity and affinity towards the most important environmental reagents and matrices. The results show that experimental matrices and datasets used for QSPR modeling should be subject to further standardization and homogenization. Removal frameworks built upon QSPRs may need to include also a kinetic component to account for spatial and temporal variations in the relative concentrations of all reagents, intermediates, metabolites, and matrices. This review shows that though much progress has been made to assess the fate of IOCs in aquatic environments, several knowledge gaps remain and further data generation and modeling techniques are needed.

List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACF</td>
<td>Activated carbon fiber</td>
</tr>
<tr>
<td>AD</td>
<td>Applicability domain</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial neural network</td>
</tr>
<tr>
<td>ATI</td>
<td>Autocorrelation topological index</td>
</tr>
<tr>
<td>BCF</td>
<td>Bioconcentration factor</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological oxygen demand</td>
</tr>
<tr>
<td>CBT</td>
<td>Closed bottle test</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation exchange capacity</td>
</tr>
<tr>
<td>DFT</td>
<td>Density functional theory</td>
</tr>
<tr>
<td>DOc</td>
<td>Dissolved organic carbon</td>
</tr>
<tr>
<td>D_{ow}</td>
<td>Octanol water distribution coefficient</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic algorithm</td>
</tr>
<tr>
<td>FCM</td>
<td>Fragment contribution method</td>
</tr>
<tr>
<td>IOC</td>
<td>Ionizable organic chemical</td>
</tr>
<tr>
<td>K_{lipw}</td>
<td>Lipid water partitioning coefficient</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>Organic carbon partitioning coefficient</td>
</tr>
<tr>
<td>K_{ow}</td>
<td>Octanol water partitioning coefficient</td>
</tr>
<tr>
<td>LFER</td>
<td>Linear free energy relationship</td>
</tr>
<tr>
<td>LR</td>
<td>Linear regression</td>
</tr>
<tr>
<td>LS-SVM</td>
<td>Least squares support vector machine</td>
</tr>
<tr>
<td>MCI</td>
<td>Molecular connectivity index</td>
</tr>
<tr>
<td>MLR</td>
<td>Multiple linear regression</td>
</tr>
<tr>
<td>MO</td>
<td>Molecular orbital</td>
</tr>
<tr>
<td>PAHs</td>
<td>Polycylic aromatic hydrocarbons</td>
</tr>
<tr>
<td>PBTK</td>
<td>Physiologically based toxicokinetic</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
</tbody>
</table>

PhACs | Pharmacologically active compounds
PPCPs | Pharmaceuticals and personal care products
PLSR | Partial least squares regression
pp-LFER | poly parameter free energy relationship
QSPRs | Quantitative structure–property relationships
RI | Reactive intermediate
SVM | Support vector machine

Acknowledgements

The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under iPiE grant agreement no. 115735, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007-2013) and EFPIA companies' kind contribution.

References

6. L. Toräng, Biodegradation rates of chemicals in surface water and groundwater assessed in batch simulation tests, Technical University of Denmark, Lyngby, Denmark, 2003.

67 I. T. Tulip, G. Karelson, D. Dobcnev, K. Tämm, J. Jänès, E. Härk and M. Karelson, QSAR Model for Organic Carbon-
Critical Review

Pharmaceuticals in the Environment: Current Impact

100 B. A. Wols and D. Vries, Modelling the water treatment efficiency of emerging contaminants by QSARs, 2012, unpublished results.

124 X. Jin, Quantitative Structure–Property Relationships Modeling of Rate Constants of Selected Micropollutants in Drinking Water Treatment Using Ozonation and UV/H_{2}O_{2}, University of Waterloo, 2012.

ozonation of a hospital wastewater effluent, Water Res.,
2014, 64, 134–148.

127. S. Sudhakaran, J. Calvin and G. L. Amy, QSAR models for
the removal of organic micropollutants in four different

128. J. R. Kanofsky and P. Sima, Singlet Oxygen Production from
the Reactions of Ozone with Biological Molecules, J. Biol.

129. W. A. Arnold, Y. Oueis, M. O’Connor, J. E. Rinaman,
M. G. Taggart, R. E. McCarthy, K. A. Foster and D. E. Latch, QSARs for phenols and phenolates: oxidation potential as a predictor of reaction rate constants with
photochemically produced oxidants, Environ. Sci.: Processes

130. E. Rorije and W. J. G. M. Peijnenburg, QSARs for oxidation
of phenols in the aqueous environment, suitable for risk

131. S. Canonica and P. G. Tratnyek, Quantitative structure–activity relationships for oxidation reactions of organic
chemicals in water, Environ. Toxicol. Chem., 2003, 22,
1743–1754.

132. D. Juretic, H. Kusic, A. Papic, M. Smidt, O. Jezovita,

133. USEPA Science Advisory Board (SAB), Review of the

134. T. Mill, W. Haag, P. Penwell, T. Petit and H. Johnson,
Environmental Fate and Exposure Studies Development of
a PC-SAR for Hydrolysis: Esters, Alkyl Halides and Epoxides,

135. AR Chem, SPARC: Automated Reasoning in Chemistry,
2010.

137. S. O. N. Tsuyuri, T. Fujimoto, H. Yamasaki, S. Hidaka,

138. B. Narasimhan, A. M. Ansari, N. Singh, V. Mourya and

139. S. H. Hilal, S. W. Karickhoff, L. A. Carreira and
B. P. Shrestha, Estimation of carboxylic acid ester
hydrolisis rate constants, QSAR Comb. Sci., 2004, 22, 917–
925.

140. B. Sulzberger, S. Canonica, T. Egli, W. Giger, J. Klausen and
U. von Gunten, Oxidative transformations of contaminants in
natural and in technical systems, Chimia, 1997, 51, 900–
907.

141. J. A. Wojtowicz, Dichlorine Monoxide, Hypochlorous Acid,
and Hypochlorites, Kirk-Othmer Encycl. Chem. Technol.,
0409030823151020.a01.pub2.

142. EMA, Guideline on the chemistry of active substances,
Committee for Medicinal Products for Human Use
(CHMP), London, United Kingdom, EMA/CHMP/QWP/
96664/2015, 2015.

143. R. Y. Xiao, T. T. Ye, Z. S. Wei, S. Luo, Z. H. Yang and
R. Spinney, Quantitative Structure–Activity Relationship
(QSAR) for the Oxidation of Trace Organic Contaminants
13402.

144. C. Perez, J. Sanchez, F. Marmol, P. Puig-Parellada and
R. Pouplana, Reactivity of biologically important NSAID
compounds with superoxide (O−2(−·)) nitric oxide
((NO)−N−⋯) and cyclooxygenase inhibition, QSAR Comb.

145. M. Petrovic and D. Barceló, Analysis, fate and removal of
pharmaceuticals in the water cycle, Wilson & Wilson, 2007,
vol. 50.

146. B. M. Peterson, A. M. McNally, R. M. Cory, J. D. Thoemke,

147. D. Beiknejad and M. J. Chaichi, Estimation of photoysis half-lives of dyes in a continuous-flow system with the aid of
quantitative structure–property relationship, Front. Environ.

148. G. Ioele, M. De Luca, F. Oliverio and G. Ragno, Prediction of
photosensitivity of 1,4-dihydropyridine antihypertensives
by quantitative structure–property relationship, Talanta,

149. C. Li, X. H. Yang, X. H. Li, J. W. Chen and X. L. Qiao,
Development of a model for predicting hydroxyl radical reaction rate constants of organic chemicals at different

150. K. Thompson, J. Y. Zhang and C. L. Zhang, Use of fugacity
model to analyze temperature-dependent removal of micro-
contaminants in sewage treatment plants, Chemosphere,
2011, 84, 1066–1071.

151. N. K. Pandit and R. P. Soltis, in Introduction to the
Pharmaceutical Sciences: An Integrated Approach, Wolters

152. J. Hoigne and H. Bader, Kinetics of Reactions of Chlorine
Dioxide (OClO) in Water. 1. Rate Constants for Inorganic

C. Anastasio, Aqueous oxidation of green leaf volatiles by
hydroxyl radical as a source of SOA: kinetics and SOA

154. M. Stratakis and M. Orfanopoulos, Regioselectivity in the
erne reaction of singlet oxygen with alkenes, Tetrahedron,

155. P. Kuenemann, P. V. and J. Devillers Structure
biodegradability relationships, in Practical Applications of
Quantitative Structure–Activity Relationships (QSAR) in
Environmental Chemistry and Toxicology, Kluwer Academic
173 Y. Tabei, Y. Yamanishi and M. Kotera, Simultaneous prediction of enzyme orthologs from chemical transformation patterns for de novo metabolic pathway reconstruction, Bioinformatics, 2016, 32, 278–287.
183 J. Dambsky and T. W. Schultz, Comparison of the Qsar models for toxicity and biodegradability of anilines and phenols, Chemosphere, 1997, 34, 429–446.
185 NRC, Physicochemical Properties and Environmental Fate, in A Framework to Guide Selection of Chemical Alternatives,
Critical Review

L. P. Wackett, Questioning our perceptions about evolution of biodegradative enzymes, Curr. Opin. Microbiol., 2009, 12, 244–251.

IME Jahresbericht 2014/2015: Comparison and improvement of laboratory water/sediment test systems; Aachen, Germany, 2015; p 168.

